Advertisement

Semiconductors

, Volume 52, Issue 8, pp 961–968 | Cite as

Formation of Precipitates in Si Implanted with 64Zn+ and 16O+ Ions

  • V. V. Privezentsev
  • E. P. Kirilenko
  • A. V. Goryachev
  • A. V. Lutzau
Nonelectronic Properties of Semiconductors (Atomic Structure, Diffusion)
  • 12 Downloads

Abstract

The results of studying the surface Si layer and precipitate formation in CZ n-Si(100) samples sequentially implanted with 64Zn+ ions with a dose of 5 × 1016 cm2 and energy of 100 keV and 16O+ ions with the same dose but an energy of 33 keV at room temperature so that their projection paths Rp = 70 nm would coincide are presented. The post-implantation samples are annealed for 1 h in an inert Ar medium in the temperature range of 400–900°C with a step of 100°C. The profiles of the implanted impurities are studied by time-of-flight secondary ion mass spectrometry. The Si surface is visualized using a scanning electron microscope, while the near-surface layer is visualized with the help of maps of elements formed by Auger electron spectroscopy with profiling over depth. The ZnO(002) texture is formed in an amorphized Si layer after the implantation of Zn and O ions. ZnO(102) crystallites of 5 nm in size are found in a recrystallized single-crystalline Si layer after annealing in Ar at 700°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Litton, N. C. Collins, and D. S. Reynolds, Zinc Oxide Material for Electronic and Optoelecrtronics Device Application (Wiley, Chichester, 2011).CrossRefGoogle Scholar
  2. 2.
    S.-P. Chang and K.-J. Chen, J. Nanomater. 2012, 602398 (2012).Google Scholar
  3. 3.
    C. Jiang, X. Sun, G. Lo, D. L. Kwong, and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    C. Li, Y. Yang, X. Sun, W. Lei, and X. B. Zhang, Nanotechnology 18, 135604 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    S. Chu, M. Olmedo, Zh. Yang, I. Kong, and J. Lin, Appl. Phys. Lett. 93, 181106 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    G. P. Smestad and M. Gratzel, J. Chem. Educ. 75, 752 (1998).CrossRefGoogle Scholar
  7. 7.
    Ch. Li, G. Beirne, G. Kamita, G. Lakhwani, J. Wang, and N. C. Greenham, J. Appl. Phys. 116, 114501 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    I. Muntele, P. Thevenard, C. Muntele, B. Chhay, and D. Ila, Mater. Res. Symp. Proc. 829, B.2.21 (2005).Google Scholar
  9. 9.
    C. Liu, H. Zhao, Y. Shen, G. Jia, J. Wang, and X. Mu, Nucl. Instrum. Methods Phys. Res. B 326, 23 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    V. Privezentsev, N. Tabachkova, and Yu. Lebedinskii, AIP Conf. Proc. 1583, 109 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Privezentsev, E. P. Kirilenko, A. N. Goryachev, and A. V. Lutzau, in Proceedings of the 23th International Symposium on Nanostructures NANO 2015 (SPb Academic Univ., Russia, 2015), p. 109.Google Scholar
  12. 12.
    J. F. Ziegler and J. P. Biersack, SRIM 2008. https://doi.org/www.srim.org Google Scholar
  13. 13.
    The NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. https://doi.org/srdata.nist.gov/xps.

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Privezentsev
    • 1
  • E. P. Kirilenko
    • 2
  • A. V. Goryachev
    • 2
  • A. V. Lutzau
    • 3
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.National Research University of Electronic TechnologyZelenograd, MoscowRussia
  3. 3.AO Research and Production Enterprise “Pulsar”MoscowRussia

Personalised recommendations