Advertisement

Semiconductors

, Volume 52, Issue 8, pp 1037–1042 | Cite as

Photoconductivity Amplification in a Type-II n-GaSb/InAs/p-GaSb Heterostructure with a Single QW

  • M. P. Mikhailova
  • I. A. Andreev
  • G. G. Konovalov
  • L. V. Danilov
  • E. V. Ivanov
  • E. V. Kunitsyna
  • N. D. Il’inskaya
  • R. V. Levin
  • B. V. Pushnyi
  • Yu. P. Yakovlev
Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • 13 Downloads

Abstract

Significant photocurrent/photoconductivity amplification is observed at low reverse biases in a type-II n-GaSb/InAs/p-GaSb heterostructure with a single quantum well (QW), grown by metal-organic vapor phase epitaxy. A sharp increase in the photocurrent by more than two orders of magnitude occurs under exposure of the heterostructure to monochromatic light with a wavelength of 1.2–1.6 μm (at 77 K) and the application of a reverse bias in the range 5–200 mV. The optical gain depends on the applied voltage and increases to 2.5 × 102 at a reverse bias of 800 mV. Theoretical analysis demonstrated that the main role in the phenomenon is played by the screening of the external electric field by electrons accumulated in the deep InAs QW and by the mechanism of the tunneling transport of carriers with a small effective mass. It is shown that the effect under study is common to both isotype and anisotype type-II heterojunctions, including structures with QWs and superlattices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Wei, A. Hood, H. Yau, A. Gin, M. Razeghi, M. Z. Tidrow, and V. Nathan, Appl. Phys. Lett. 86, 233106 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    M. Mikhailova, N. Stoyanov, I. Andreev, B. Zhurtanov, S. Kizhaev, E. Kunitsyna, K. Salikhov, and Yu. Yakovlev, Proc. SPIE 6585, 658526 (2007).CrossRefGoogle Scholar
  3. 3.
    M. Razeghi, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, E. K. Huang, and M. Z. Tidrow, Proc. SPIE 6940, 694009 (2008).CrossRefGoogle Scholar
  4. 4.
    P. K. D. D. P. Pitigala, Y. F. Lao, A. G. U. Perera, L. H. Li, E. H. Linfield, and H. C. Liu, J. Appl. Phys. 115, 063105 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    M. Ahmetoglu, B. Kucur, I. A. Andreev, E. V. Kunitsyna, M. P. Mikhailova, and Yu. P. Yakovlev, Acta Phys. Polon. A 127, 1007 (2015).CrossRefGoogle Scholar
  6. 6.
    E. V. Kunitsyna, E. A. Grebenshchikova, G. G. Konovalov, I. A. Andreev, and Yu. P. Yakovlev, Semiconductors 50, 1403 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    F. Capasso, in Semiconductors and Semimetals, Vol. 22: Lightwave Communications Technology: Photodetectors, Ed. by W. Tsang (Academic, New York, 1985), Chap. 1.Google Scholar
  8. 8.
    J. Campbell, in Semiconductors and Semimetals, Vol. 22: Lightwave Communications Technology: Photodetectors, Ed. by W. Tsang (Academic, New York, 1985), Chap. 5.Google Scholar
  9. 9.
    M. P. Mikhailova and A. N. Titkov, Semicond. Sci. Technol. 9, 1279 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    B. A. Wilson, IEEE J. Quant. Electron. 24, 1763 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    A. Milnes and D. Feucht, Heterojunctions and Metal Semiconductor Junctions (Mir, Moscow, 1975; Academic, New York, 1972), Chap. 4.Google Scholar
  12. 12.
    C. van Opdorp and J. Vrakking, Solid-State Electron. 10, 995 (1967).Google Scholar
  13. 13.
    S. Yawata and R. L. Anderson, Phys. Status Solidi 12, 297 (1965).CrossRefGoogle Scholar
  14. 14.
    I. A. Andreev, A. N. Baranov, M. A. Mirsagatov, M. P. Mikhailova, A. A. Rogachev, G. M. Filaretova, and Yu. P. Yakovlev, Sov. Tech. Phys. Lett. 14, 173 (1988).Google Scholar
  15. 15.
    R. V. Levin, V. N. Nevedomskii, B. V. Pushnyi, N. A. Bert, and M. N. Mizerov, Tech. Phys. Lett. 42, 96 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    L. V. Danilov, M. P. Mikhailova, E. V. Ivanov, G. G. Konovalov, E. A. Grebenschikova, R. V. Levin, B. V. Pushnyi, G. G. Zegrya, and Yu. P. Yakovlev, in Proceedings of the 24th International Symposium on Nanostructures: Physics and Technology, St. Petersburg, Russia, 2016, p. 219.Google Scholar
  17. 17.
    Handbook Series on Semiconductor Parameters, Ed. by M. Levinstein, S. Rumyantsev, and M. Shur (World Scientific, Singapore, New York, London, Hong Kong, 1996), Vol. 1, Chap. 6.Google Scholar
  18. 18.
    F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, and A. L. Hutchinson, Phys. Rev. Lett. 55, 1152 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, and A. Y. Cho, Appl. Phys. Lett. 63, 2670 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    L. V. Danilov, M. P. Mikhailova, I. A. Andreev, and G. G. Zegrya, Semiconductors 51, 1148 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. P. Mikhailova
    • 1
  • I. A. Andreev
    • 1
  • G. G. Konovalov
    • 1
  • L. V. Danilov
    • 1
  • E. V. Ivanov
    • 1
  • E. V. Kunitsyna
    • 1
  • N. D. Il’inskaya
    • 1
  • R. V. Levin
    • 1
  • B. V. Pushnyi
    • 1
  • Yu. P. Yakovlev
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations