Advertisement

Semiconductors

, Volume 52, Issue 8, pp 1082–1085 | Cite as

Room Temperature Lasing of Multi-Stage Quantum-Cascade Lasers at 8 μm Wavelength

  • A. V. Babichev
  • A. G. Gladyshev
  • A. S. Kurochkin
  • E. S. Kolodeznyi
  • G. S. Sokolovskii
  • V. E. Bougrov
  • L. Ya. Karachinsky
  • I. I. Novikov
  • A. G. Bousseksou
  • A. Yu. Egorov
Physics of Semiconductor Devices
  • 18 Downloads

Abstract

Room-temperature lasing at a wavelength of 8 μm in multistage quantum-cascade lasers pumped by current pulses is demonstrated. A quantum-cascade laser heterostructure based on the In0.53Ga0.47As/Al0.48In0.52As alloy heteropair, matched to an InP substrate, is grown by molecular-beam epitaxy and consists of 50 identical cascades placed in a waveguide with air as the top cladding. A threshold current density of ~5.1 kA/cm2 at a temperature of 300 K is obtained in ridge lasers with a cavity length of 1.4 mm and a ridge width of 24 μm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Yu, S. Slivken, and M. Razeghi, Semicon Sci. Technol. 25, 125015 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    A. P. M. Michel, J. Kapit, M. F. Witinski, and R. Blanchard, Appl. Opt. 56 (11), E23 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    L. Joly, V. Zéninari, T. Decarpenterie, J. Cousin, B. Grouiez, D. Mammez, G. Durry, M. Carras, X. Marcadet, and B. Parvitte, Laser Phys. 21, 805 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. Hildenbrand, J. Herbst, J. Wölenstein, and A. Lambrecht, Proc. SPIE 7222, 72220B (2009).ADSCrossRefGoogle Scholar
  5. 5.
    H. Zimmermann, M. Wiese, L. Fiorani, and A. Ragnoni, J. Sensor Sensor Syst. 6, 155 (2017).CrossRefGoogle Scholar
  6. 6.
    D. Kunkel, R. J. Basseri, M. D. Makhani, K. Chong, C. Chang, and M. Pimentel, Dig. Dis. Sci. 56, 1612 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Jahjah, W. Ren, P. Stefański, R. Lewicki, J. Zhang, W. Jiang, J. Tarka, and F. K. Tittel, Analyst 139, 2065 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    V. Moreau, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, Opt. Express 16, 6387 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    A. Bousseksou, R. Colombelli, A. Babuty, Y. de Wilde, Y. Chassagneux, C. Sirtori, G. Patriarche, G. Beaudoin, and I. Sagnes, Opt. Express 17, 9391 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, J. Appl. Phys. 118, 093101 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, Opt. Express 19, 17203 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    C. Gmachl, A. Tredicucci, F. Capasso, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, Appl. Phys. Lett. 72, 3130 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    S. Slivken, A. Matlis, A. Rybaltowski, Z. Wu, and M. Razeghi, Appl. Phys. Lett. 74, 2758 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, Opt. Eng. 49, 111109 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    M. Troccoli and X. Wang, J. Fan. Opt. Eng. 49, 111106 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    M. Troccoli, A. Lyakh, J. Fan, X. Wang, R. Maulini, A. G. Tsekoun, R. Go, and C. K. N. Patel, Opt. Mater. Express 3, 1546 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    R. M. Briggs, C. Frez, M. Fradet, S. Forouhar, R. Blanchard, L. Diehl, and C. Pflügl, Opt. Express 24, 14589 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, Appl. Phys. Lett. 91, 141121 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, ACS Photon. 4, 1225 (2017).CrossRefGoogle Scholar
  20. 20.
    K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, and T. Edamura, Appl. Phys. Lett. 101, 181111 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    M. Troccoli, IEEE J. Sel. Top. Quantum Electron. 21, 61 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    C. Gmachi, F. Capasso, A. Tredicucci, D. L. Sivxo, R. Kohler, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 808 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    H. Li, S. Katz, A. Vizbaras, G. Boehm, and M. C. Amann, IEEE Photon. Technol. Lett. 22, 1811 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    M. Razeghi and S. Slivken, Proc. SPIE 5136, 317 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    O. Fedosenko, M. Chashnikova, S. Machulik, J. Kischkat, M. Klinkmüller, A. Aleksandrova, G. Monastyrskyi, M. P. Semtsiv, and W. T. Masselink, J. Cryst. Growth 323, 484 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    H. Zhu, F. Wang, Q. Yan, C. Yu, J. Chen, G. Xu, L. He, L. Li, L. Chen, A. G. Davies, E. H. Linfield, J. Hao, P. B. Vigneron, and R. Colombelli, Appl. Phys. Lett. 109, 231105 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    M. Garcia, F. J. Vermersch, X. Marcadet, S. Bansropun, M. Carras, A. Wilk, and C. Sirtori, Proc. SPIE 6133, 613304 (2006).CrossRefGoogle Scholar
  28. 28.
    A. V. Babichev, A. Bousseksou, N. A. Pikhtin, I. S. Tarasov, E. V. Nikitina, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, I. I. Novikov, L. Ya. Karachinsky, and A. Yu. Egorov, Semiconductors 50, 1299 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    A. V. Babichev, A. G. Gladyshev, A. V. Filimonov, V. N. Nevedomskii, A. S. Kurochkin, E. S. Kolodeznyi, G. S. Sokolovskii, V. E. Bugrov, L. Ya. Karachinsky, I. I. Novikov, A. Bousseksou, and A. Yu. Egorov, Tech. Phys. Lett. 43, 666 (2017).ADSCrossRefGoogle Scholar
  30. 30.
    M. Razeghi, IEEE J. Sel. Top. Quantum Electron. 15, 941 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, Appl. Phys. Lett. 94, 251114 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photon. 4, 99 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. von der Porten, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, Proc. Natl. Acad. Sci. 107, 18799 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, Appl. Phys. Lett. 91, 071101 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    J. Faist, Appl. Phys. Lett. 90, 253512 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    N. Bandyopadhyay, Y. Bai, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 105, 071106 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    A. Y. Egorov, A. V. Babichev, L. Y. Karachinsky, I. I. Novikov, E. V. Nikitina, M. Tchernycheva, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, N. A. Pikhtin, and I. S. Tarasov, Semiconductors 49, 1527 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Babichev
    • 1
    • 2
  • A. G. Gladyshev
    • 2
  • A. S. Kurochkin
    • 1
  • E. S. Kolodeznyi
    • 1
  • G. S. Sokolovskii
    • 1
    • 3
    • 4
  • V. E. Bougrov
    • 1
  • L. Ya. Karachinsky
    • 1
    • 2
    • 3
  • I. I. Novikov
    • 1
    • 2
    • 3
  • A. G. Bousseksou
    • 5
  • A. Yu. Egorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Connector Optics LLCSt. PetersburgRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia
  4. 4.Saint Petersburg Electrotechnical University “LETI”Saint PetersburgRussia
  5. 5.Center of Nanoscience and Nanotechnology (C2N)Université Paris Sud and Paris-SaclayOrsay cedexFrance

Personalised recommendations