Semiconductors

, Volume 52, Issue 4, pp 523–525 | Cite as

Floquet Engineering of Gapped 2D Materials

  • O. V. Kibis
  • K. Dini
  • I. V. Iorsh
  • I. A. Shelykh
XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Quantum Wells, Quantum Wires, Quantum Dots, and Band Structure
  • 9 Downloads

Abstract

It is demonstrated theoretically that the interaction of gapped 2D materials (gapped graphene and transition metal dichalchogenide monolayers) with a strong high-frequency electromagnetic field (dressing field) crucially changes the band structure of the materials. As a consequence, the renormalized band structure of the materials drastically depends on the field polarization. Particularly, a linearly polarized dressing field always decreases band gaps, whereas a circularly polarized field breaks the equivalence of band valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. It is shown also that a dressing field can turn both the band gaps and the spin splitting of the bands into zero. As a result, the dressing field can serve as an effective tool to control spin and valley properties of the materials in various optoelectronic applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hanngi, in Quantum Transport and Dissipation, Ed. by T. Dittrich, P. Hanggi, G.-L. Ingold, B. Kramer, G. Schon, and W. Zwerger (Wiley, Weinheim, 1998), p. 249.Google Scholar
  2. 2.
    S. Morina, O. V. Kibis, A. A. Pervishko, and I. A. Shelykh, Phys. Rev. B 91, 155312 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Pervishko, O. V. Kibis, S. Morina, and I. A. Shelykh, Phys. Rev. B 92, 205403 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    K. Dini, O. V. Kibis, and I. A. Shelykh, Phys. Rev. B 93, 235411 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    K. Kristinsson, O. V. Kibis, S. Morina, and I. A. Shelykh, Sci. Rep. 6, 20082 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    O. V. Kibis, S. Morina, K. Dini, and I. A. Shelykh, Phys. Rev. B 93, 115420 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    O. V. Kibis, K. Dini, I. V. Iorsh, and I. A. Shelykh, Phys. Rev. 95, 125401 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    A. C. Ferrari et al., Nanoscale 7, 4598 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    A. Kormanyos et al., 2D Mater. 2, 022001 (2015).CrossRefGoogle Scholar
  10. 10.
    D. A. Romanov and O. V. Kibis, Phys. Lett. A 178, 335 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    O. V. Kibis, JETP Lett. 66, 588 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    O. V. Kibis, Phys. Lett. A 237, 292 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    O. V. Kibis, Phys. Lett. A 244, 432 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    D. Lawton, A. Nogaret, M. V. Makarenko, O. V. Kibis, S. J. Bending, and M. Henini, Physica E 13, 699 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Kibis
    • 1
  • K. Dini
    • 2
  • I. V. Iorsh
    • 3
  • I. A. Shelykh
    • 2
    • 3
  1. 1.Department of Applied and Theoretical PhysicsNovosibirsk State Technical UniversityNovosibirskRussia
  2. 2.Science InstituteUniversity of IcelandReykjavikIceland
  3. 3.ITMO UniversitySt. PetersburgRussia

Personalised recommendations