Advertisement

Plasma Physics Reports

, Volume 45, Issue 11, pp 1066–1070 | Cite as

Dynamics of Pulsed X-Ray Radiation of a Plasma Micropinch Discharge

  • I. G. Grigoryeva
  • V. A. Kostyushin
  • G. Kh. SalakhutdinovEmail author
APPLIED PHYSICS
  • 6 Downloads

Abstract

A complex of diagnostic equipment has been created and a measurement procedure has been developed for a multi-channel scintillation X-ray spectrometer with nanosecond time resolution in the energy range of 2–70 keV. The dynamics of the spectral composition of pulsed X-ray plasma of a micropinch discharge has been studied using a “low-inductance vacuum spark” facility. The conducted studies made possible to obtain experimental results of the dynamics of the electron temperature Te of plasma during micropinch discharge and to determine the sequence of formation of hard X-ray radiation.

Notes

REFERENCES

  1. 1.
    V. V. Vikhrev, V. V. Ivanov, and K. N. Koshelev, Sov. J. Plasma Phys. 8, 688 (1982).ADSGoogle Scholar
  2. 2.
    P. S. Antsiferov, V. V. Vikhrev, V. V. Ivanov, and K. N. Koshelev, Sov. J. Plasma Phys. 16, 592 (1990).Google Scholar
  3. 3.
    I. V. Romanov, V. L. Paperny, and Yu. V. Korobkin, Tech. Phys. Lett. 42, 160 (2016.ADSCrossRefGoogle Scholar
  4. 4.
    O. A. Bashutin, E. D. Vovchenko, E. I. Dodulat, A. S. Savelov, and S. A. Sarantsev, Plasma Phys. Rep. 38, 235 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    I. G. Grigoryeva, A. S. Savjolov, and G. Kh. Salakhutdinov, Plasma Phys. Rep. 43, 801 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    E. D. Vovchenko, I. G. Grigoryeva, V. V. Makarov, A. S. Savelov, and G. Kh. Salakhutdinov, Plasma Phys. Rep. 38, 991 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A. V. Balovnev, I. G. Grigoryeva, and G. Kh. Salakhutdinov, Instrum. Exp. Tech. 61, 91 (2018).CrossRefGoogle Scholar
  8. 8.
    A. V. Balovnev, I. G. Grigoryeva, and G. Kh. Salakhutdinov, Instrum. Exp. Tech. 58, 252 (2015).CrossRefGoogle Scholar
  9. 9.
    V. V. Averkiev, Yu. P. Kushakevich, A. B. Lyskovich, V. K. Lyapidevskiy, and I. M. Rozman, Zh. Prikl. Spektrosk. 49, 136 (1988).Google Scholar
  10. 10.
    O. A. Bashutin, I. G. Grigoryeva, A. S. Savelov, and G. Kh. Salakhutdinov, Instrum. Exp. Tech. 60, 372 (2017).CrossRefGoogle Scholar
  11. 11.
    V. V. Vikhrev and E. O. Baronova, Prikl. Fiz., No. 5, 71 (1999).Google Scholar
  12. 12.
    A. V. Balovnev, O. A. Bashutin, I. G. Grigoryeva, I. L. Manohin, and G. Kh. Salakhutdinov, Prikl. Fiz., No. 4, 22 (2017).Google Scholar
  13. 13.
    A. N. Dolgov, N. A. Klyachin, and D. E. Prokhorovich, Usp. Prikl. Fiz. 3, 242 (2015).Google Scholar
  14. 14.
    L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Pilugin, Phys. Usp. 37, 247 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    L. P. Babich, Phys. Usp. 48, 1015 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena(ISTC Science and Technology Series,Vol. 2) (Futurepast, Arlington, VA, 2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. G. Grigoryeva
    • 1
  • V. A. Kostyushin
    • 1
  • G. Kh. Salakhutdinov
    • 1
    Email author
  1. 1.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations