Advertisement

Plasma Physics Reports

, Volume 45, Issue 11, pp 1035–1052 | Cite as

Study of the Properties of an Anomalous Glow Discharge Generating Electron Beams in Helium, Oxygen, and Nitrogen

  • P. A. Bokhan
  • P. P. Gugin
  • D. E. ZakrevskyEmail author
  • M. A. Lavrukhin
LOW-TEMPERATURE PLASMA
  • 15 Downloads

Abstract

The current–voltage characteristics (CVCs) and efficiency of electron beam generation in glow discharges in helium and its mixtures with oxygen and nitrogen, as well as in pure oxygen and nitrogen, are studied experimentally. Special attention is paid to creating clean conditions for a discharge operating in helium. It is shown that, under clean conditions and pressures above 10 Torr, the CVC first rapidly grows. Then, the growth slows down and the CVC begins to decrease; however, at voltages above 1.5 kV, it rapidly grows again. These features are explained via changes in the mechanisms of electron emission and electron runaway from the cathode sheath, which lead to a highly efficient (up to 85%) generation of electron beams. In the presence of molecular admixtures, the CVC changes and begins to smoothly grow, the current being substantially higher than in pure helium. In pure oxygen and nitrogen, the CVC also grows smoothly and electron beam generation is highly efficient, but its mechanism is different. In pure helium, electrons are generated primarily due to photoemission, whereas in pure oxygen and nitrogen, electron emission from the cathode is mainly caused by the bombardment by fast heavy particles. In helium mixtures with oxygen and nitrogen, other emission mechanisms can also take place.

Notes

FUNDING

This work was performed under State Assignment no. 0306-2019-0020 and supported in part by the Russian Foundation for Basic Research, project no. 17-08-00121.

REFERENCES

  1. 1.
    Generation of Runaway Electrons and X-rays in High Pressure Gases, Vol. 1: Techniques and Measurements, Vol. 2: Processes and Applications, Ed. by V. F. Tarasenko (STT, Tomsk, 2015; Nova Science, New York, 2016).Google Scholar
  2. 2.
    A. I. Golovin and A. I. Shloido, Usp. Prikl. Fiz. 4, 439 (2016).Google Scholar
  3. 3.
    H. Dreicer, Phys. Rev. 115, 238 (1959). https://doi.org/10.1103/PhysRev.115.238ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. P. Babich, T. V. Loiko, and V. A.Tsukerman, Sov. Phys. Usp. 33, 521 (1990). https://doi.org/10.3367/UFNr.0160.199007b.0049ADSCrossRefGoogle Scholar
  5. 5.
    L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (Futurepast, Arlington, VA, 2003).Google Scholar
  6. 6.
    K. A. Klimenko and Yu. D. Korolev, Sov. Phys. Tech. Phys. 35, 1084 (1990).Google Scholar
  7. 7.
    A. I. Golovin, Prikl. Fiz., No. 4, 27 (2016). https://doi.org/10.3367/UFNr.2017.10.038360CrossRefGoogle Scholar
  8. 8.
    H. C. Hayden and N. G. Utterback, Phys. Rev. 135, A1575 (1964). https://doi.org/10.1103/PhysRev.135.A1575ADSCrossRefGoogle Scholar
  9. 9.
    A. R. Sorokin, Phys. Usp. 61, 1234 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    K. N. Ul’yanov and V. V. Chulkov, Sov. Phys. Tech. Phys. 33, 201 (1988).Google Scholar
  11. 11.
    D. Marić, K. Kutasi, G. Malović, Z. Donkó, and Z. Lj. Petrović, Eur. Phys. J. D 21, 73 (2002). https://doi.org/10.1140/epjd/e2002-00179-xADSCrossRefGoogle Scholar
  12. 12.
    B. M. Jelenković and A. V. Phelps, Phys. Rev. E 71, 016410 (2005). https://doi.org/10.1103/PhysRevE.71.016410ADSCrossRefGoogle Scholar
  13. 13.
    J. J. Rocca, J. D. Meyer, M. R. Farrell, and G. J. Collins, J. Appl. Phys. 56, 790 (1984). https://doi.org/10.1063/1.334008ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Turkin, Tech. Phys. 59, 1591 (2014).CrossRefGoogle Scholar
  15. 15.
    P. Hartmann, H. Matsuo, Y. Ohtsuka, M. Fukao, M. Kando, Z. Donkó, Jpn. J. Appl. Phys. 42, 3633 (2003). https://doi.org/10.1143/JJAP.42.3633ADSCrossRefGoogle Scholar
  16. 16.
    A. Derzsi, P. Hartmann, I. Korolov, J. Karacsony, G. Bánó, and Z. Donkó, J. Phys. D 42, 225204 (2009). https://doi.org/10.1088/0022-3727/42/22/225204ADSCrossRefGoogle Scholar
  17. 17.
    A. P. Bokhan, P. A. Bokhan, and Dm. E. Zakrevsky, Tech. Phys. Lett. 29, 873 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    E. V. Belskaya, P. A. Bokhan, and Dm. E. Zakrevsky, Appl. Phys. Lett. 93, 091503 (2008). https://doi.org/10.1063/1.2978350ADSCrossRefGoogle Scholar
  19. 19.
    P. A. Bokhan and D. E. Zakrevsky, Tech. Phys. Lett. 28, 73 (2002).ADSCrossRefGoogle Scholar
  20. 20.
    P. A. Bokhan and D. E. Zakrevsky, Appl. Phys. Lett. 81, 2526 (2002). https://doi.org/10.1063/1.1511289ADSCrossRefGoogle Scholar
  21. 21.
    P. A. Bokhan and D. E. Zakrevsky, Plasma Phys. Rep. 32, 786 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    P. A. Bokhan, P. P. Gugin, and Dm. E. Zakrevsky, Tech. Phys. Lett. 44, 1092 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    K. N. Ul’yanov, High Temp. 43, 641 (2005).CrossRefGoogle Scholar
  24. 24.
    I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].Google Scholar
  25. 25.
    Z. Yu, J. J. Rocca, and G. J. Collins, J. Appl. Phys. 54, 131 (1983). https://doi.org/10.1063/1.331738ADSCrossRefGoogle Scholar
  26. 26.
    P. A. Bokhan and D. E. Zakrevsky, Tech. Phys. 52, 104 (2007).CrossRefGoogle Scholar
  27. 27.
    Yu. I. Syts’ko and S. I. Yakovlenko, Sov. J. Plasma Phys. 2, 34 (1976).Google Scholar
  28. 28.
    P. A. Bokhan and D. E. Zakrevsky, JETP Lett. 96, 133 (2012). https://doi.org/10.1134/S0021364012140032ADSCrossRefGoogle Scholar
  29. 29.
    P. A. Bokhan and Dm. E. Zakrevsky, Phys. Rev. E. 88, 013105 (2013). https://doi.org/10.1103/PhysRevE.88.013105ADSCrossRefGoogle Scholar
  30. 30.
    A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Tech. Phys. 50, 1233 (2005).CrossRefGoogle Scholar
  31. 31.
    A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Appl. Phys. Lett. 86, 151503 (2005). https://doi.org/10.1063/1.1901819ADSCrossRefGoogle Scholar
  32. 32.
    O. V. Dudka, V. A. Ksenofontov, A. A. Masilov, and E. V. Sadanov, Tech. Phys. Lett. 39, 960 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    A. V. Phelps, Plasma Sources Sci. Technol. 10, 329 (2001). https://doi.org/10.1088/0963-0252/10/2/323ADSCrossRefGoogle Scholar
  34. 34.
    D. Marić, K. Kutasi, G. Malović, Z. Donkó, and Z. Lj. Petrović, Eur. Phys. J. D 21, 73 (2002). https://doi.org/10.1140/epjd/e2002-00179-xADSCrossRefGoogle Scholar
  35. 35.
    N. G. Utterback and G. H. Miller, Rev.Sci. Inst. 32, 1101 (1961). https://doi.org/10.1063/1.1717173ADSCrossRefGoogle Scholar
  36. 36.
    N. G. Utterback and G. H. Miller, Phys. Rev. 124, 1477 (1961). https://doi.org/10.1103/PhysRev.124.1477ADSCrossRefGoogle Scholar
  37. 37.
    W. D.Wilson, L. G. Haggmark, and J. P. Biersack, Phys. Rev. 15, 2458 (1977). https://doi.org/10.1103/PhysRevB.15.2458ADSCrossRefGoogle Scholar
  38. 38.
    N. G. Utterback, Phys. Rev. 129, 219 (1963). https://doi.org/10.1103/PhysRev.129.219ADSCrossRefGoogle Scholar
  39. 39.
    L. Xu, A. V. Khrabrov, I. D. Kaganovich, and T. J. Sommer, Phys. Plasmas 24, 093511 (2017). https://doi.org/10.1063/1.5000387ADSCrossRefGoogle Scholar
  40. 40.
    U. A. Arifov, R. R. Rakhimov, and Kh. D. Dzhurakulov, Radiotekh. Elektron. 8, 299 (1963).Google Scholar
  41. 41.
    N. Cook and R. B. Burtt, J. Phys. D 8, 800 (1975). https://doi.org/10.1088/0022-3727/8/7/012ADSCrossRefGoogle Scholar
  42. 42.
    D. Marić, M. Savić, J. Sivoš, N. Skoro, M. Radmilović-Radjenović, G. Malović, and Z. Lj. Petrović, Eur. Phys. J. D 68, 155 (2014). https://doi.org/10.1140/epjd/e2014-50090-xADSCrossRefGoogle Scholar
  43. 43.
    A. P. Bokhan, P. A. Bokhan, and D. E. Zakrevsky, Plasma Phys. Rep. 32, 549 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    A. N. Tkachev and S. I. Yakovlenko, Tech. Phys. Lett. 29, 683 (2002).ADSCrossRefGoogle Scholar
  45. 45.
    A. V. Karelin and A. R. Sorokin, Plasma Phys. Rep. 31, 519 (2005).ADSCrossRefGoogle Scholar
  46. 46.
    T. Holstein, Phys. Rev. 72, 1212 (1947). https://doi.org/10.1103/PhysRev.72.1212ADSCrossRefGoogle Scholar
  47. 47.
    T. Holstein, Phys. Rev. 83, 1159 (1951). https://doi.org/10.1103/PhysRev.83.1159ADSCrossRefGoogle Scholar
  48. 48.
    A. V. Phelps, Phys. Rev. 117, 619 (1960). https://doi.org/10.1103/PhysRev.117.619ADSCrossRefGoogle Scholar
  49. 49.
    Z. Donkó, S. Hamaguchi, and T. Gans, Plasma Sources Sci. Technol. 27, 054001 (2018).ADSCrossRefGoogle Scholar
  50. 50.
    A. Fierro, Ch. Moore, B. Scheiner, B. T. Yee, and M. M. Hopkins, J. Phys. D 50, 065202 (2017). https://doi.org/10.1088/1361-6463/aa506cADSCrossRefGoogle Scholar
  51. 51.
    F. L. Jones, C. G. Morgan, and D. K. Davies, Proc. Phys. Soc. 85, 351 (1965). https://doi.org/10.1088/0370-1328/85/2/317ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. A. Bokhan
    • 1
  • P. P. Gugin
    • 1
  • D. E. Zakrevsky
    • 1
    • 2
    Email author
  • M. A. Lavrukhin
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations