Plasma Physics Reports

, Volume 45, Issue 8, pp 777–785 | Cite as

Matrix Algorithm of Approximate Solution of Wave Equations in Inhomogeneous Magnetoactive Plasma

  • V. G. MizonovaEmail author


The problem of propagation of an electromagnetic wave in plane-stratified magnetoactive plasma is analyzed. A matrix algorithm of approximate solution of a set of wave equations is proposed. The algorithm consists in successive finding of the medium-inhomogeneity-induced corrections to the local roots of the dispersion relation and local polarization vectors. The set of field equations is reduced to a set of algebraic equations. The proposed algorithm is convenient for numerical calculations. In contrast to the classical geometrical-optics approximation, the proposed algorithm allows one to take into account the weak effect of linear mode interaction. Examples of numerical calculations of the power reflection coefficient of whistler waves incident on the ionosphere from above are presented. The proposed matrix algorithm can be useful to find the coefficients of reflection and linear transformation of waves in a smoothly inhomogeneous ionosphere.



  1. 1.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).Google Scholar
  2. 2.
    L. M. Brekhovskikh, Waves in Layered Media (USSR Academy of Sciences, Moscow, 1957; Academic, New York, 1960).Google Scholar
  3. 3.
    J. R. Wait, Electromagnetic Waves in Stratified Media (Pergamon, New York, 1970).zbMATHGoogle Scholar
  4. 4.
    K. G. Budden, The Propagation of Radio Waves (Cambridge Univ. Press, Cambridge, 1985).CrossRefGoogle Scholar
  5. 5.
    N. G. Lehtinen and U. S. Inan, J. Geophys. Res. 113, A06301 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Kuzichev and D. R. Shklyar, Plasma Phys. Rep. 39, 795 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Laptukhov and G. P. Chernov, Plasma Phys. Rep. 38, 560 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    N. V. Lebedev and V. V. Rudenko, Plasma Phys. Rep. 41, 512 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    M. L. V. Pitteway and J. L. Jespersen, J. Atmos. Solar Terr. Phys. 28, 17 (1966).ADSCrossRefGoogle Scholar
  10. 10.
    T. Nygrén, Planet. Space Sci. 30, 427 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    P. A. Bespalov, V. G. Mizonova, and O. N. Savina, J. Atmos. Solar Terr. Phys. 175, 40 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    N. Fröman and P. O. Fröman, JWKB Approximation: Contributions to the Theory (North-Holland, Amsterdam, 1965).zbMATHGoogle Scholar
  13. 13.
    D. R. Shklyar, M. Parrot, and E. E. Titova, J. Geophys. Res. 123, 7077 (2018).CrossRefGoogle Scholar
  14. 14.
    D. Bilitza and B. Reinisch, Adv. Space Res. 42, 599 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia

Personalised recommendations