Advertisement

Plasma Physics Reports

, Volume 45, Issue 5, pp 501–516 | Cite as

Physico-Chemical Investigation of Pulsed Discharge in CO2/O2 Gas Mixture

  • L. Saidia
  • A. Belasri
  • S. Baadj
  • Z. HarracheEmail author
LOW-TEMPERATURE PLASMA
  • 37 Downloads

Abstract

In this research, the decomposition of CO2 in CO2/O2 pulsed discharge was studied. The developed model is based on the physical processes involved in the discharge with the CO2 plasma chemistry, the electrical circuit, and the Boltzmann equations. The fundamental chemistry of CO2/O2 gas mixture used in this work is based on a full set of processes regrouped in 113 reactions involving 21 species of the discharge. The obtained numerical results show the temporal variations of electrical parameters and species concentrations of the discharge. We have also studied the effect of some discharge parameters (gas pressure, dielectric capacitance, applied voltage, concentration of O2 in CO2/O2 gas mixture, and frequency) on the discharge behavior.

REFERENCES

  1. 1.
    R. Aerts, T. Martens, and A. Bogaerts, J. Phys. Chem. C 116, 23257 (2012).CrossRefGoogle Scholar
  2. 2.
    S. Ponduri, M. M. Becker, S. Welzel, M. C. M. van de Sanden, D. Loffhagen, and R. Engeln, J. Appl. Phys. 119, 093301 (2016).CrossRefGoogle Scholar
  3. 3.
    T. Kozàk and A. Bogaerts, Plasma Sources Sci. Technol. 23, 045004 (2014).CrossRefGoogle Scholar
  4. 4.
    D. Mei and X. Tu, J. CO2 Utilizat. 19, 68 (2017).Google Scholar
  5. 5.
    R. Aerts, W. Somers, and A. Bogaerts, Chem. Sus. Chem. 8, 702 (2015).CrossRefGoogle Scholar
  6. 6.
    F. Brehmer, S. Wetzel, M. C. M. Van de Sanden, and R. Engeln, J. Appl. Phys. 116, 123303 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Ramakers, I. Michielsen, R. Aerts, V. Meynen, and A. Bogaerts, Plasma Process. Polym. 12, 755 (2015).CrossRefGoogle Scholar
  8. 8.
    R. Snoeckx, S. Heijkers, K. Van Wesenbeeck, S. Lenaerts, and A. Bogaerts, Energy Environ. Sci. 9, 999 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Ozkan, T. Dufour, A. Bogaerts, and F. Reniers, Plasma Sources Sci. Technol. 25, 045016 (2016).CrossRefGoogle Scholar
  10. 10.
    M. S. Moss, K. Yanallah, R. W. K. Allen, and F. Pontiga, Plasma Sources Sci. Technol. 26, 035009 (2017).CrossRefGoogle Scholar
  11. 11.
    G. Horvath, J. D. Skalny, and N. J. Mason, J. Phys. D 41, 225207 (2008).CrossRefGoogle Scholar
  12. 12.
    W. W. Xu, L. Ming-Wei, X. Gen-Hui, and T. Yi-Ling, Jpn. J. Appl. Phys. 43, 8310 (2004).CrossRefGoogle Scholar
  13. 13.
    T. Kozàk and A. Bogaerts, Plasma Sources Sci. Technol. 24, 015024 (2015).CrossRefGoogle Scholar
  14. 14.
    T. Silva, N. Britun, T. Godfroid, and R. Snyders, Plasma Sources Sci. Technol. 23, 025009 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Hokazono and H. Fujimoto, J. Appl. Phys. 62, 1585 (1987).CrossRefGoogle Scholar
  16. 16.
    A. Cenian, A. Chernukho, V. Borodin, and G. Sliwinski, Contrib. Plasma Phys. 34, 25 (1994).CrossRefGoogle Scholar
  17. 17.
    W. Wang, A. Berthelot, S. Kolev, X. Tu, and A. Bogaerts, Plasma Sources Sci. Technol. 25, 065012 (2016).CrossRefGoogle Scholar
  18. 18.
    W. Wang, D. Mei, X. Tu, and A. Bogaerts, Chem. Eng. J. 330, 11 (2017).CrossRefGoogle Scholar
  19. 19.
    L. D. Pietanza, G. Colonna, G. D. Ammando, A. Laricchiuta, and M. Capitelli, Plasma Sources Sci. Technol. 24, 042002 (2015).CrossRefGoogle Scholar
  20. 20.
    S. Paulussen, B. Verheyde, X. Tu, C. De Bie, T. Martens, D. Petrovic, A. Bogaerts, and B. Sels, Plasma Sources Sci. Technol. 19, 034015 (2010).CrossRefGoogle Scholar
  21. 21.
    Q. Yu, M. Kong, T. Liu, J. Fei, and X. Zheng, Plasma Chem. Plasma Process. 32, 153 (2012).CrossRefGoogle Scholar
  22. 22.
    A. Ozkan, T. Dufour, G. Arnoult, P. DeKeyzer, A. Bogaerts, and F. Reniers, J. CO2 Utilizat. 9, 74 (2015).Google Scholar
  23. 23.
    M. SooBak, S. KyunIm, and M. Cappelli, IEEE Trans. Plasma Sci. 43, 1002 (2015).Google Scholar
  24. 24.
    A. Bogaerts, T. Kozak, K. Van Laer, and R. Snoeckx, Faraday Discuss. 183, 217 (2015).CrossRefGoogle Scholar
  25. 25.
    A. Ozkan, T. Dufour, T. Silva, N. Britun, R. Snyders, A. Bogaerts, and F. Reniers, Plasma Sources Sci. Technol. 25, 025013 (2016).CrossRefGoogle Scholar
  26. 26.
    A. Berthelot and A. Bogaerts, Plasma Sources Sci. Technol. 25, 045022 (2016).CrossRefGoogle Scholar
  27. 27.
    O. Taylan and H. Berberoglu, Plasma Sources Sci. Technol. 24, 015006 (2015).CrossRefGoogle Scholar
  28. 28.
    T. Mikoviny, M. Kocan, S. Matejcik, N. J. Mason, and J. D. Skalny, J. Phys. D 37, 64 (2004).CrossRefGoogle Scholar
  29. 29.
    T. Mikoviny, J. D. Skalny, J. Orszagh, and N. J. Mason, J. Phys. D 40, 6646 (2007).CrossRefGoogle Scholar
  30. 30.
    M. Benyamina, A. Belasri, and K. Khodja, Ozone Sci. Eng. 36, 253 (2014).CrossRefGoogle Scholar
  31. 31.
    A. Belasri, N. Larbi Daho Bachir, and Z. Harrache, Plasma Chem. Plasma Process. 33, 131 (2013).CrossRefGoogle Scholar
  32. 32.
    A. Belasri and Z. Harrache, Phys. Plasmas 17, 123501 (2010).CrossRefGoogle Scholar
  33. 33.
    C. W. Gear, Numerical Initial Value Problem in Ordinary Differential Equations (Prentice-Hall, Enlewood Cliffs, NJ, 1971).zbMATHGoogle Scholar
  34. 34.
    https://www.bolsig.laplace.univ-tlse.fr/.Google Scholar
  35. 35.
    T. G. Beuthe and J. S. Chang, Jpn. J. Appl. Phys. 36, 4997 (1997).CrossRefGoogle Scholar
  36. 36.
    B. Mennad, Z. Harrache, D. Amir Aid, and A. Belasri, Current Appl. Phys. 10, 1391 (2010).CrossRefGoogle Scholar
  37. 37.
    J. T. Gudmundsson and E. G. Thorsteinsson, Plasma Sources Sci. Technol. 16, 399 (2007).CrossRefGoogle Scholar
  38. 38.
    J. T. Gudmundsson, Technical Report No. RH-21-2002 (Science Institute, University of Iceland, 2002).Google Scholar
  39. 39.
    C. Lee, D. B. Graves, M. A. Lieberman, and D. W. Hess, J. Electrochem. Soc. 141, 1546 (1994).CrossRefGoogle Scholar
  40. 40.
    H. Hokazono, M. Obara, K. Midorikawa, and H. Tashiro, J. Appl. Phys. 69, 6850 (1991).CrossRefGoogle Scholar
  41. 41.
    O. V. Braginskiy, A. N. Vasilieva, K. S. Klopovskiy, A. S. Kovalev, D. V. Lopaev, O. V. Proshina, T. V. Rakhimova, and A. T. Rakhimov, J. Phys. D 38, 3609 (2005).CrossRefGoogle Scholar
  42. 42.
    A. M. Starik, B. I. Loukhovitski, and A. P. Chernukho, Plasma Sources Sci. Technol. 21, 035015 (2012).CrossRefGoogle Scholar
  43. 43.
    N. L. Aleksandrov, Sov. Phys. Tech. Phys. 23, 806 (1978).Google Scholar
  44. 44.
    A. Cenian, A. Chernukho, and V. Borodin, Contrib. Plasma Phys. 35, 273 (1995).CrossRefGoogle Scholar
  45. 45.
    I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).CrossRefGoogle Scholar
  46. 46.
    J. Woodall, M. Agundez, A. J. Markwick-Kemper, and T. J. Millar, Astron. Astrophys. 466, 1197 (2007).CrossRefGoogle Scholar
  47. 47.
    A. A. Ionin, I. V. Kochetov, A. P. Napartovich, and N. N. Yuryshev, J. Phys. D 40, R25 (2007).CrossRefGoogle Scholar
  48. 48.
    S. I. Kozlov, V. A. Vlaskov, and N. V. Smirnova, Kosm. Issled. 26, 738 (1988).Google Scholar
  49. 49.
    B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D 20, 1421 (1987).CrossRefGoogle Scholar
  50. 50.
    A. V. Vasenkov, X. Li, G. S. Oehrlein, and M. J. Kushner, J. Vac. Sci. Technol. A 22, 511 (2004).CrossRefGoogle Scholar
  51. 51.
    J. Zinn, C. D. Sutherland, S. N. Stone, and L. M. Duncan, J. Atmos. Terr. Phys. 44, 1143 (1982).CrossRefGoogle Scholar
  52. 52.
    Defense Nuclear Agency Reaction Rate Handbook (DNA Report No. 1948H-REV-8), Ed. by M. H. Bortner and T. Baurer (General Electric Tempo Center, Santa Barbara, CA, 1978), Ch. 24.Google Scholar
  53. 53.
    J. W. Dettmer, PhD Thesis (Air Force Institute of Technology, Dayton, OH, 1978).Google Scholar
  54. 54.
    B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny, D. Pagnon, M. Touzeau, and M. Vialle, IEEE Trans. Plasma Sci. 23, 750 (1995).CrossRefGoogle Scholar
  55. 55.
    L. E. Khvorostovskaya, Contrib. Plasma Phys. 31, 71 (1991).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique des Plasmas, des Matériaux Conducteurs et leurs Applications (LPPMCA), Département de Physique Energétique, Faculté de Physique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf USTO-MB, POB 1505OranAlgeria

Personalised recommendations