Advertisement

Plasma Physics Reports

, Volume 45, Issue 3, pp 195–206 | Cite as

Neutral Beam Current Drive in Globus-M Compact Spherical Tokamak

  • P. B. ShchegolevEmail author
  • V. B. Minaev
  • N. N. Bakharev
  • V. K. Gusev
  • E. O. Kiselev
  • G. S. Kurskiev
  • M. I. Patrov
  • Yu. V. Petrov
  • A. Yu. Telnova
TOKAMAKS
  • 11 Downloads

Abstract

The article presents research on neutral beam current drive in Globus-M compact spherical tokamak. The experiments were performed in the plasma current range of 0.17–0.20 MA with a 0.4- or 0.5‑T toroidal magnetic field. The injection impact parameter was 33 cm. The variable parameters included compositions of plasma and the heating beam (hydrogen, deuterium), plasma density, and vertical displacement of the plasma column. The simultaneous increase in the plasma current and drop in the loop voltage were used to determine the neutral beam current drive. The injection of a hydrogen/deuterium beam into deuterium or hydrogen plasma resulted in a significant and reproducible drop in the loop voltage (up to 0.5 V). In order to process the obtained data, the authors developed an ASTRA code-based model, which allows one to calculate the neutral beam-driven current and bootstrap current. The share of noninductive currents as a function of plasma density during the injection of a hydrogen beam (28 keV, 0.5 MW) into the deuterium plasma was calculated. The authors analyze the results of experiments on off-axis beam injection achieved by vertical displacement of the plasma column and the effect of increasing the toroidal magnetic field on the consumption of the poloidal magnetic flux in discharges with atomic beam injection.

Notes

ACKNOWLEDGMENTS

The authors would like to thank Globus-M tokamak personnel for their assistance with organizing and carrying out experiments and preparing this paper, as well as for their insight on the obtained results. Routine measurements of plasma parameters were performed under the state assignment at the Ioffe Institute, and measurements of neutral beam injector parameters were supported by the program of the P-residium of the Russian Academy of Sciences. The study of noninductive current drive in regimes with an early atomic beam injection received funding from the -Russian Science Foundation, research project No. 17‑72-20076.

REFERENCES

  1. 1.
    M. Shimada, D. J. Campbell, V. Mukhovatov, M. Fujiwara, N. Kirneva, K. Lackner, M. Nagami, V. D. Pustovitov, N. Uckan, J. Wesley, N. Asakura, A. E. Costley, A. J. H. Donn’e, E. J. Doyle, A. Fasoli, et al., Nucl. Fusion 47, 1 (2007).CrossRefGoogle Scholar
  2. 2.
    J. Menard, M. Boyer, T. Brown, J. Canik, B. Covele, C. D’Angelo, A. Davis, L. El-Guebaly, S. Gerhardt, S. Kaye, C. Kessel, M. Kotschenreuther, S. Mahajan, R. Maingi, E. Marriott, et al., in Proceedings of the 25th IAEA Fusion Energy Conference, St. Petersburg, 2014, Paper FNS/1-1.Google Scholar
  3. 3.
    B. V. Kuteev, E. A. Azizov, A. S. Bykov, A. Y. Dnestrovsky, V. N. Dokuka, G. G. Gladush, A. A. Golikov, P. R. Goncharov, M. Gryaznevich, M. I. Gurevich, A. A. Ivanov, R. R. Khairutdinov, V. I. Khripunov, D. Kingham, A. V. Klishchenko, et al., Nucl. Fusion 51, 073013 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    J. E. Menard, T. Brown, L. El-Guebaly, M. Boyer, J. Canik, B. Colling, R. Raman, Z. Wang, Y. Zhai, P. Buxton, B. Covele, C. D’Angelo, A. Davis, S. Gerhardt, M. Gryaznevich, et al., Nucl. Fusion 56, 106023 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    P. B. Shchegolev, N. N. Bakharev, V. K. Gusev, G. S. Kurskiev, V. B. Minaev, M. I. Patrov, Yu. V. Petrov, and N. V. Sakharov, Tech. Phys. 60, 1321 (2015).CrossRefGoogle Scholar
  6. 6.
    C. Gormezano, A. C. C. Sips, T. C. Luce, S. Ide, A. Becoulet, X. Litaudon, A. Isayama, J. Hobirk, M. R. Wade, T. Oikawa, R. Prater, A. Zvonkov, B. Lloyd, T. Suzuki, E. Barbato, et al., Nucl. Fusion 47, 285 (2007).CrossRefGoogle Scholar
  7. 7.
    T. Suzuki, R. J. Akers, D. A. Gates, S. Gunter, W. W. Heidbrink, J. Hobirk, T. C. Luce, M. Murakami, J. M. Park, M. Turnyanskiy, and the ITPA ‘Integrated Operation Scenarios’ group members and experts, Nucl. Fusion 51, 083020 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. Murakami, J. M. Park, C. C. Petty, T. C. Luce, W. W. Heidbrink, T. H. Osborne, R. Prater, M. R. Wade, P. M. Anderson, M. E. Austin, N. H. Brooks, R. V. Budny, C. D. Challis, J. C. DeBoo, J. S. deGrassie, et al., Nucl. Fusion 49, 065031 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    M. Turnyanskiy, D. L. Keeling, R. Akers, J. G. Cunningham, H. Meyer, and S. D. Pinches, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper EX/P6-26.Google Scholar
  10. 10.
    V. K. Gusev, V. E. Golant, E. Z. Gusakov, V. V. D’yachenko, M. A. Irzak, V. B. Minaev, E. E. Mukhin, A. N. Novokhatskii, K. A. Podushnikova, G. T. Razdobarin, N. V. Sakharov, E. N. Tregubova, V. S. Uzlov, O. N. Shcherbinin, V. A. Belyakov, et al., Tech. Phys. 44, 1054 (1999).CrossRefGoogle Scholar
  11. 11.
    V. K. Gusev, A. V. Dech, L. A. Esipov, V. B. Minaev, A. G. Barsukov, G. B. Igon’kina, V. V. Kuznetsov, A. A. Panasenkov, M. M. Sokolov, G. N. Tilinin, A. V. Lupin, and V. K. Markov, Tech. Phys. 52, 1127 (2007).CrossRefGoogle Scholar
  12. 12.
    P. B. Shchegolev, V. B. Minaev, and I. V. Miroshnikov, NTV SPbGPU Fiz.-Mat. Nauki, No. 4, 79 (2012).Google Scholar
  13. 13.
    G. S. Kurskiev, S. Yu. Tolstyakov, A. A. Berezutskii, V. K. Gusev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, and P. V. Chernakov, Vopr. At. Nauki Tekh., Ser. Termotad. Sintez, No. 2, 81 (2012).Google Scholar
  14. 14.
    N. N. Bakharev, A. D. Mel’nik, V. B. Minaev, Yu. V. Petrov, and F. V. Chernyshev, NTV SPbGPU Fiz.-Mat. Nauki, No. 4, 74 (2012).Google Scholar
  15. 15.
    G. F. Avdeeva, I. V. Miroshnikov, N. N. Bakharev, G. S. Kurskiev, M. I. Patrov, V. Yu. Sergeev, and P. B. Shchegolev, J. Phys. Conf. Ser. 666, 012002 (2016).CrossRefGoogle Scholar
  16. 16.
    Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965).Google Scholar
  17. 17.
    V. K. Gusev, S. E. Bender, A. V. Dech, Yu. A. Kostsov, R. G. Levin, A. B. Mineev, and N. V. Sakharov, Tech. Phys. 51, 987 (2006).CrossRefGoogle Scholar
  18. 18.
    G. V. Pereverzev and P. N. Yushmanov, Preprint No. IPP 5/98 (Institute for Plasma Physics, Garching, 2002).Google Scholar
  19. 19.
    N. N. Bakharev, F. V. Chernyshev, P. R. Goncharov, V. K. Gusev, A. D. Iblyaminova, V. A. Kornev, G. S. Kurskiev, A. D. Melnik, V. B. Minaev, M. I. Mironov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, P. B. Shchegolev, S. Yu. Tolstyakov, et al., Nucl. Fusion 55, 043023 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    P. B. Shchegolev, V. B. Minaev, A. Yu. Telnova, N. N. Bakharev, V. K. Gusev, G. S. Kurskiev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, and S. Yu. Tolstyakov, in Proceedings of the 43rd EPS Conference on Plasma Physics, Leuven, 2016, ECA 40A, P1.065 (2016). http://ocs.ciemat.es/EPS2016PAP/pdf/P1.065.pdf.Google Scholar
  21. 21.
    W. A. Houlberg, K. C. Shaing, S. P. Hirshman, and M. C. Zarnstorff, Phys. Plasmas 4, 3230 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    G. S. Kurskiev, V. K. Gusev, N. V. Sakharov, N. N. Bakharev, A. D. Iblyaminova, P. B. Shchegolev, G. F. Avdeeva, E. O. Kiselev, V. B. Minaev, E. E. Mukhin, M. I. Patrov, Yu. V. Petrov, A. Yu. Telnova, and S. Yu. Tolstyakov, Plasma Phys. Controlled Fusion 59, 045010 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    V. K. Gusev, E. A. Azizov, A. B. Alekseev, A. F. Arneman, N. N. Bakharev, V. A. Belyakov, S. E. Bender, E. N. Bondarchuk, V. V. Bulanin, A. S. Bykov, F. V. Chernyshev, I. N. Chugunov, V. V. Dyachenko, O. G. Filatov, A. D. Iblyaminova, et al., Nucl. Fusion 53, 093013 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    G. S. Kurskiev, V. K. Gusev, S. Yu. Tolstyakov, A. A. Berezutskii, V. V. Bulanin, V. I. Varfolomeev, M. M. Kochergin, V. B. Minaev, E. E. Mukhin, M. I. Patrov, A. V. Petrov, Yu. V. Petrov, N. V. Sakharov, V. V. Semenov, A. Yu. Yashin, et al., Tech. Phys. Lett. 37, 1127 (2011).CrossRefGoogle Scholar
  25. 25.
    I. T. Chapman, M.-D. Hua, S. D. Pinches, R. J. Akers, A. R. Field, J. P. Graves, R. J. Hastie, C. A. Michael, and the MAST Team, Nucl. Fusion 50, 045007 (2010).CrossRefGoogle Scholar
  26. 26.
    V. B. Minaev, V. K. Gusev, N. V. Sakharov, V. I. Varfolomeev, N. N. Bakharev, V. A. Belyakov, E. N. Bondarchuk, P. N. Brunkov, F. V. Chernyshev, V. I. Davydenko, V. V. Dyachenko, A. A. Kavin, S. A. Khitrov, N. A. Khromov, E. O. Kiselev, et al., Nucl. Fusion 57, 066047 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    P. B. Shchegolev, V. B. Minaev, A. Yu. Telnova, N. N. Bakharev, P. R. Goncharov, V. K. Gusev, G. S. Kurskiev, I. V. Miroshnikov, M. I. Patrov, Yu. V. Petrov, N. V. Sakharov, I. V. Shikhovtsev, and S. Yu. Tolstyakov, J. Phys. Conf. Ser. 907, 012013 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. B. Shchegolev
    • 1
    Email author
  • V. B. Minaev
    • 1
  • N. N. Bakharev
    • 1
  • V. K. Gusev
    • 1
  • E. O. Kiselev
    • 1
  • G. S. Kurskiev
    • 1
  • M. I. Patrov
    • 1
  • Yu. V. Petrov
    • 1
  • A. Yu. Telnova
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations