Advertisement

Plasma Physics Reports

, Volume 45, Issue 1, pp 21–27 | Cite as

Stable Levitation of Superconducting Myxines of Galathea Plasma Traps

  • M. V. KozintsevaEmail author
  • A. M. Bishaev
  • A. A. Bush
  • M. B. Gavrikov
  • A. V. Desyatskov
  • K. E. Kamentsev
  • V. V. Savelyev
  • A. S. Sigov
  • Yu. I. Tusnov
MAGNETIC CONFINEMENT SYSTEMS
  • 4 Downloads

Abstract

Designing magnetic systems of Galathea plasma traps on the basis of levitating superconducting magnetic coils requires searching for their stable levitating states. For this purpose, proceeding from the property of superconductors to preserve the trapped magnetic flux, the potential energy of a system of several coaxial superconducting rings (one of the rings is fixed) with given trapped magnetic fluxes is obtained as an analytic function of the coordinates of the free rings along the system axis and angular deviations of their axes from the common axis of the system in a uniform gravity field in the thin-ring approximation. Computations demonstrate that, under certain values of physical parameters (the trapped magnetic flux and the dimensions and masses of the rings), this dependence has local minima, which correspond to stable equilibrium states of the levitating rings. For high-temperature superconducting (HTSC) rings and short-circuited HTSC coils manufactured for experiments on levitation, equilibrium states are found in different cases by calculating the aforementioned dependence of the potential energy. In the case where the magnetic fluxes trapped by the rings have the same signs, the calculated equilibrium levitating states of an HTSC ring in the field of a short-circuited HTSC coil (or an HTSC ring), namely, states that are stable against vertical displacements and angular deviations of the axis from the vertical, are implemented experimentally.

Notes

ACKNOWLEDGMENTS

We are grateful to I.F. Voloshin for useful advice on the technology of manufacturing short-circuited HTSC coils. This work was supported by the Ministry of Education and Science of the Russian Federation, project nos. 8.4853.2017/BCh and 3.5160.2017/BCh.

REFERENCES

  1. 1.
    A. I. Morozov and V. V. Savel’ev, Phys. Usp. 41, 1049 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, A. S. Lipatov, V. I. Vasil’ev, and V. M. Strunnikov, Plasma Phys. Rep. 32, 171 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, and A. S. Lipatov, Tech. Phys. 52, 1546 (2007).CrossRefGoogle Scholar
  4. 4.
    A. M. Bishaev, A. I. Bugrova, M. V. Kozintseva, A. S. Lipatov, A. S. Sigov, and V. K. Kharchevnikov, Tech. Phys. Lett. 36, 487 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Bishaev, A. I. Bugrova, M. B. Gavrikov, M. V. Kozintseva, A. S. Lipatov, V. V. Savel’ev, A. S. Sigov, P. G. Smirnov, I. A. Tarelkin, and P. P. Khramtsov, Tech. Phys. 58, 498 (2013).CrossRefGoogle Scholar
  6. 6.
    A. M. Bishaev, G. E. Bugrov, A. V. Desyatskov, M. V. Kozintseva, P. V. Ogarkov, P. G. Sazonov, M. B. Gavrikov, and V. V. Savel’ev, Vest. MGTU MIREA, No. 2, 101 (2015). https://rtj.mirea.ru/upload/medialibrary/7ff/09-bishaev.pdf.Google Scholar
  7. 7.
    J. H. Schultz, G. Driscoll, D. Garnier, J. Kesner, M. Mauel, J. V. Minervini, A. Smith, A. Radovinsky, G. Snitchler, and A. Zhukovsky, IEEE Trans. Appl. Supercond. 11, 2004 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    A. C. Boxer, R. Bergmann, J. L. Ellsworth, D. T. Garnier, J. Kesner, M. E. Mauel, and P. Woskov, Nature Phys. 6, 207 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    H. Saitoh, Z. Yoshida, J. Morikawa, Y. Yano, T. Mizushima, and M. Kobayashi, J. Fusion Energy 29, 553 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Yano, Z. Yoshida, Y. Ogawa, J. Morikawa, and H. Saitoh, Fusion Eng. Des. 85, 641 (2010).CrossRefGoogle Scholar
  11. 11.
    A. M. Bishaev, A. A. Bush, M. B. Gavrikov, M. V. Kozintseva, K. E. Kamentsev, V. V. Saveliev, and A. S. Sigov, Tech. Phys. Lett. 38, 880 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    A. M. Bishaev, A. A. Bush, M. B. Gavrikov, I. S. Gordeev, A. I. Denisyuk, K. E. Kamentsev, M. V. Kozintseva, V. V. Savel’ev, and A. S. Sigov, Tech. Phys. 58, 684 (2013).CrossRefGoogle Scholar
  13. 13.
    A. M. Bishaev, A. A. Bush, M. B. Gavrikov, A. I. Denisyuk, K. E. Kamentsev, M. V. Kozintseva, V. V. Savel’ev, and A. S. Sigov, Tech. Phys. 59, 940 (2014).CrossRefGoogle Scholar
  14. 14.
    A. M. Bishaev, A. A. Bush, M. A. Behtin, M. B. Gavrikov, I. S. Gordeev, A. I. Bugrova, K. Ye. Kamentsev, M. V. Kozintseva, V. V. Savel’ev, A. A. Safronov, M. I. Shaposhnikov, and P. G. Smirnov, Probl. At. Sci. Technol., Ser. Plasma Phys., No. 1, 48 (2013).Google Scholar
  15. 15.
    A. M. Bishaev, A. A. Bush, M. B. Gavrikov, A. I. Denis’uk, O. Y. D’yakonitsa, K. Y. Kamentsev, M. V. Kozintseva, T. G. Kolesnikova, V. V. Savelyev, P. G. Smirnov, M. M. Shapovalov, and S. A. Voronchenko, Probl. At. Sci. Technol., Ser. Plasma Phys., No. 1, 16 (2015).Google Scholar
  16. 16.
    A. M. Bishaev, A. A. Bush, M. B. Gavrikov, K. E. Kamentsev, M. V. Kozintseva, V. V. Savel’ev, and A. S. Sigov, Tech. Phys. 60, 1710 (2015).CrossRefGoogle Scholar
  17. 17.
    M. V. Kozintseva, A. M. Bishaev, A. A. Bush, M. B. Gavrikov, K. E. Kamentsev, N. A. Nizhel’skii, V. V. Savel’ev, and A. S. Sigov, Tech. Phys. 62, 890 (2017).CrossRefGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  19. 19.
    Ph. Vanderbemden, R. Cloots, and M. Ausloos, IEEE Trans. Appl. Supercond. 9, 2308 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    http://www.superpower-inc.com/content/2g-hts-wire.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. V. Kozintseva
    • 1
    Email author
  • A. M. Bishaev
    • 1
  • A. A. Bush
    • 1
  • M. B. Gavrikov
    • 2
  • A. V. Desyatskov
    • 1
  • K. E. Kamentsev
    • 1
  • V. V. Savelyev
    • 2
    • 3
  • A. S. Sigov
    • 1
  • Yu. I. Tusnov
    • 1
  1. 1.Russian Technological University MIREAMoscowRussia
  2. 2.Keldysh Institute of Applied Mathematics, Russian Academy of SciencesMoscowRussia
  3. 3.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations