Advertisement

Plasma Physics Reports

, Volume 44, Issue 12, pp 1154–1163 | Cite as

Influence of a Nitrogen Admixture on the Value and Radial Profile of the Metastable Argon Atom Density in a DC Glow Discharge in Argon

  • G. M. Grigorian
  • N. A. DyatkoEmail author
  • I. V. KochetovEmail author
LOW-TEMPERATURE PLASMA
  • 5 Downloads

Abstract

Results of measurements of the value and radial profile of the density of Ar(3P2) metastables in a dc discharge in pure argon and Ar + 0.1%N2 and Ar + 1%N2 mixtures are presented. The electric field strength in the positive column of the discharge was also measured. The experiments were performed in a 2‑cm-radius discharge tube at gas pressures of 1, 7, and 60 Torr and discharge currents in the range of 10–50 mA. It is found that, at a pressure of 60 Torr, a nitrogen admixture to argon leads to a significant decrease in the electric field strength in the diffuse discharge, while at P = 1 Torr, in contrast, the electric field increases substantially. The degree to which the nitrogen admixture affects the density of Ar(3P2) atoms on the discharge tube axis also depends on the gas pressure. At a pressure of 60 Torr, the Ar(3P2) density decreases substantially (by three orders of magnitude for the 1%N2 admixture and 1.5 orders of magnitude for the 0.1%N2 admixture), while at a pressure of 1 Torr, the Ar(3P2) densities in pure argon and in Ar + N2 mixtures differ less than twice. It is also shown that, at all gas pressures under study, a nitrogen admixture to argon leads to the broadening of the radial profile of the Ar(3P2) density. The experiments were accompanied by numerical and theoretical studies. For pure argon, the calculations were performed in a one-dimensional (along the tube radius) discharge model, while for the Ar + 1%N2 mixture, in a zero-dimensional model, which allows one to calculate the plasma parameters on the tube axis. The calculated results were used to qualitatively explain the experimentally observed effects.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-02-00861-a.

REFERENCES

  1. 1.
    F. Tochikubo, Z. L. Petrović, N. Nakano, and T. Makabe, Jpn. J. Appl. Phys. 33, 4271 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    M. Fiebrandt, B. Hillebrand, S. Spiekermeier, N. Bibinov, M. Boke, and P. Awakowicz, J. Phys. D 50, 355202 (2017).CrossRefGoogle Scholar
  3. 3.
    N. Britun, M. Gaillard, A. Ricard, Y. M. Kim, K. S. Kim, and J. G. Han, J. Phys. D 40, 1022 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    M. Moravej, X. Yang, M. Barankin, J. Penelon, S. E. Babayan, and R. F. Hicks, Plasma Sources Sci. Technol. 15, 204 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    B. Fritsche, T. Chevolleau, J. Kourtev, A. Kolitsch, and W. Möller, Vacuum 69, 139 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    Y.-C. Kim, H.-C. Lee, Y.-S. Kim, and C.-W. Chung, Phys. Plasmas 22, 083512 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    P. A. Sá and J. Loureiro, J. Phys. D 30, 2320 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    J. Henriques, E. Tatarova, F. M. Dias, and C. M. Ferreira, J. Appl. Phys. 103, 103304 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    S. Hübner, E. Carbone, J. M. Palomares, and J. van der Mullen, Plasma Process. Polym. 11, 482 (2014).CrossRefGoogle Scholar
  10. 10.
    K. H. Becker, N. M. Masoud, K. E. Martus, and K. H. Schoenbach, Eur. Phys. J. D 35, 279 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A. Barkhordari, A. Ganjovi, I. Mirzaei, A. Falahat, and M. N. Rostami Ravari, J. Theor. Appl. Phys. 11, 301 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    N. Masoud, K. Martus, and K. Becker, J. Phys. D 38, 1674 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    J. A. Bravo, R. Rincón, J. Muñoz, A. Sánchez, and M. D. Calzada, Plasma Chem. Plasma Process. 35, 993 (2015).CrossRefGoogle Scholar
  14. 14.
    T. Kimura, K. Akatsuka, and K. Ohe, J. Phys. D 27, 1664 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. Z. Ionikh, A. V. Meshchanov, F. B. Petrov, N. A. Dyatko, and A. P. Napartovich, Plasma Phys. Rep. 34, 867 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Z. Ionikh, N. A. Dyatko, A. V. Meshchanov, A. P. Napartovich, and F. B. Petrov, Plasma Sources Sci. Technol. 21, 055008 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, A. P. Napartovich, and K. A. Barzilovich, Plasma Phys. Rep. 36, 1040 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    N. A. Dyatko, Y. Z. Ionikh, A. V. Meshchanov, and A. P. Napartovich, J. Phys. D 46, 355202 (2013).CrossRefGoogle Scholar
  19. 19.
    L. M. Isola, M. López, J. M. Cruceño, and B. J. Gó-mez, Plasma Sources Sci. Technol. 23, 015014 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    P. G. Reyes, C. Torres, and H. Martinez, Radiat. Eff. Defects Solids 169, 285 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    V. A. Zhovtyansky and O. V. Anisimova, Ukr. J. Phys. 59, 1155 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Bogaerts, Spectrochim. Acta B 64, 126 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    G. P. Jackson and F. L. King, Spectrochim. Acta B 58, 185 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, and A. P. Napartovich, Plasma Phys. Rep. 44, 334 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    A. Qayyum, S. Zeb, M. A. Naveed, N. U. Rehman, S. A. Ghauri, and M. Zakaullah, J. Quant. Spectrosc. Radiat. Transfer 107, 361 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    E. H. Lock, Tz. B. Petrova, G. M. Petrov, D. R. Boris, and S. G. Walton, Phys. Plasmas 23, 043518 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    G. M. Grigorian, N. A. Dyatko, and I. V. Kochetov, Phys. Plasmas 24, 073503 (2017).ADSCrossRefGoogle Scholar
  28. 28.
    G. M. Grigorian, N. A. Dyatko, and I. V. Kochetov, J. Phys. D 48, 445201 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    N. A. Dyatko, Y. Z. Ionikh, I. V. Kochetov, D. L. Marinov, A. V. Meschanov, A. P. Napartovich, F. B. Petrov, and S. A. Starostin, J. Phys. D 41, 055204 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, R. R. Arslanbekov, V. I. Kolobov, and V. V. Kudryavtsev, Tech. Phys. 49, 698 (2004).CrossRefGoogle Scholar
  31. 31.
    N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Plasma Sources Sci. Technol. 23, 043001 (2014).ADSCrossRefGoogle Scholar
  32. 32.
    E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, R. R. Arslanbekov, and V. I. Kolobov, Tech. Phys. 49, 849 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Troitsk Institute for Innovation and Fusion ResearchTroitskRussia
  3. 3.Pushkov Institute for Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of SciencesTroitskRussia
  4. 4.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations