Advertisement

Plasma Physics Reports

, Volume 44, Issue 12, pp 1114–1125 | Cite as

Four Tensors Determining Thermal and Electric Conductivities of Degenerate Electrons in Magnetized Plasma

  • G. S. Bisnovatyi-KoganEmail author
  • M. V. GlushikhinaEmail author
SPACE PLASMA

Abstract

A solution to the Boltzmann equation is obtained for a magnetized plasma with strongly degenerate nonrelativistic electrons and nondegenerate nuclei. The components of the diffusion, thermal diffusion, and diffusion thermoeffect tensors in a nonquantizing magnetic field are calculated in the Lorentz approximation without allowance for electron−electron collisions, which is asymptotically accurate for plasma with strongly degenerate electrons. Asymptotically accurate analytical expressions for the electron diffusion, thermal diffusion, and diffusion thermoeffect tensors in the presence of a magnetic field are obtained for the first time. The expressions reveal a considerably more complicated dependence on magnetic field than analogous dependences derived in the previous publications on this subject.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 18-12-00378.

REFERENCES

  1. 1.
    E. E. Salpeter, Astrophys. J. 134, 669 (1961).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Flowers and N. Itoh, Astrophys. J. 206, 218 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    D. G. Yakovlev and V. A. Urpin, Sov. Astron. 24, 303 (1980).ADSGoogle Scholar
  4. 4.
    S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1952).zbMATHGoogle Scholar
  5. 5.
    R. Landshoff, Phys. Rev. 82, 442 (1951).ADSCrossRefGoogle Scholar
  6. 6.
    S. I. Braginskii, Sov. Phys. JETP 6, 358 (1958)].ADSMathSciNetGoogle Scholar
  7. 7.
    W. Marshall, Phys. Rev. 118, 1519 (1960).ADSCrossRefGoogle Scholar
  8. 8.
    G. S. Bisnovatyi-Kogan, M.Sc. Thesis (Moscow Inst. of Physics and Technology, Dolgoprudnyi, 1964).Google Scholar
  9. 9.
    G. S. Bisnovatyi-Kogan, Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 43 (1964).Google Scholar
  10. 10.
    N. A. Bobrova and P. V. Sasorov, Plasma Phys. Rep. 19, 409 (1993).ADSGoogle Scholar
  11. 11.
    S. Kaneko and M. Taguchi, J. Phys. Soc. Jpn. 45, 4 (1978).CrossRefGoogle Scholar
  12. 12.
    A. Yu. Potekhin, Astron. Astrophys. 357, 787 (1999).ADSGoogle Scholar
  13. 13.
    A. Kovetz and G. Shaviv, Astron. Astrophys. 28, 315 (1973).ADSGoogle Scholar
  14. 14.
    G. S. Bisnovatyi-Kogan and M. V. Glushikhina, Plasma Phys. Rep. 44, 405 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    S. Z. Tomonaga, Z. Phys. 110, 573 (1938).ADSCrossRefGoogle Scholar
  16. 16.
    E. Uehling and G. Uhlenbeck, Phys. Rev. 43, 552 (1933).ADSCrossRefGoogle Scholar
  17. 17.
    E. Uehling, Phys. Rev. 46, 917 (1934).ADSCrossRefGoogle Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).Google Scholar
  19. 19.
    G. S. Bisnovatyi-Kogan and M. M. Romanova, Sov. Phys. JETP 56, 243 (1982).Google Scholar
  20. 20.
    G. S. Bisnovatyi-Kogan, Yu. N. Kulikov, and V. M. Chechetkin, Sov. Astron. 20, 303 (1976).Google Scholar
  21. 21.
    L. E. Kalikhman, Elements of Magnetohydrodynamics (Atomizdat, Moscow, 1964) [in Russian].Google Scholar
  22. 22.
    G. S. Bisnovatyi-Kogan, Physical Basis of Stellar Evolution Theory (Nauka, Moscow, 1989) [in Russian].zbMATHGoogle Scholar
  23. 23.
    V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].Google Scholar
  24. 24.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Space Research Institute, Russian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations