Aneutronic Fusion in Collision of Oppositely Directed Plasmoids
- 21 Downloads
Abstract
Tri-Alpha and Helion energy companies have proposed an approach as the near future fusion reactor. The method used in this kind of reactor for attaining high fusion yield is based on the formation and throwing of two plasmoids toward each other. In this study, the optimized reaction rate for interpenetration of two head on colliding plasmoids is investigated. Calculations are performed by supposing the velocity of plasmoids ions as Maxwellian distribution function. Fusion output-to-input power ratio (Q factor) was computed by evaluation of the velocity-averaged cross sections and also ion−electron and ion−ion Coulomb power loss. A fluid model including a computational code has been used for the precise calculations of fusion power balance. The optimum interpenetration velocity and plasmoids parameters required to reach the ignition are studied for aneutronic fusion fuels, such as p–11B and D–3He, as well as D−T and D−D fuels. The results of investigation show that the breakeven is attainable in specific collision velocity and plasma temperature for each fuel. Also, the plasma density has to be around 1020 ions/cm3.
Preview
Unable to display preview. Download preview PDF.
References
- 1.J. Slough, G. Votroubek, and C. Pihl, Nucl. Fusion 51, 053008 (2011).ADSCrossRefGoogle Scholar
- 2.M. M. Basko, A. J. Kemp, and J. Meyer-ter-Vehn, Nucl. Fusion 40, 59 (2000).ADSCrossRefGoogle Scholar
- 3.S. A. Slutz, M. C. Herrmann, R. A. Vesey, A. B. Sefkow, D. B. Sinars, D. C. Rovang, K. J. Peterson, and M. E. Cuneo, Phys. Plasmas 17, 056303 (2010).ADSCrossRefGoogle Scholar
- 4.T. P. Intrator, J. Y. Park, J. H. Degnan, I. Furno, C. Grabowski, S. C. Hsu, E. L. Ruden, P. G. Sanchez, J. M. Taccetti, M. Tuszewski, W. J. Waganaar, G. A. Wurden, S. Y. Zhang, and Zh. Wang, IEEE Trans. Plasma Sci. 32, 152 (2004).ADSCrossRefGoogle Scholar
- 5.J. H. Degnan, D. J. Amdahl, A. Brown, T. Cavazos, S. K. Coffey, M. T. Domonkos, M. H. Frese, S. D. Frese, D. G. Gale, T. C. Grabowski, T. P. Intrator, R. C. Kirkpatrick, G. F. Kiuttu, F. M. Lehr, J. D. Letterio, et al., IEEE Trans. Plasma Sci. 36, 80 (2008).ADSCrossRefGoogle Scholar
- 6.S. Zhang, G. A. Wurden, T. P. Intrator, E. L. Ruden, W. J. Waganaar, C. T. Grabowski, R. M. Renneke, and J. H. Degnan, IEEE Trans. Plasma Sci. 34, 223 (2006).ADSCrossRefGoogle Scholar
- 7.R. E. Siemon, R. I. Lindemuth, and K. F. Schoenberg, Comm. Plasma Phys. Controlled Fusion 18, 363 (1999).Google Scholar
- 8.J. H. Degnan, J. M. Taccetti, T. Cavazos, D. Clark, S. K. Coffey, R. J. Faehl, M. H. Frese, D. Fulton, J. C. Gueits, D. Gale, T. W. Hussey, T. P. Intrator, R. C. Kirkpatrick, G. H. Kiuttu, F. M. Lehr, et al., IEEE Trans. Plasma Sci. 29, 93 (2001).ADSCrossRefGoogle Scholar
- 9.S. A. Slutz and R. A. Vesey, Phys. Rev. Lett. 108, 025003 (2012).ADSCrossRefGoogle Scholar
- 10.H. Hora, G. H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, and X.-T. He, Energy Environ. Sci. 3, 479 (2010).CrossRefGoogle Scholar
- 11.S. Sonm and N. J. Fisch, Physics Lett. A 356, 72 (2006).ADSCrossRefGoogle Scholar
- 12.N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 772 (1992).ADSCrossRefGoogle Scholar
- 13.N. J. Fisch and M. C. Herrmann, Nucl. Fusion 35, 1753 (1995).ADSCrossRefGoogle Scholar
- 14.N. J. Fisch and M. C. Herrmann, Nucl. Fusion 34, 1541 (1994).ADSCrossRefGoogle Scholar
- 15.J. T. Slough, patent No. US 9082516B2 (2015)Google Scholar
- 16.M. Binderbauer, V. Bystritskii, and T. Tajima, patent No. EP 3187028A2 (2017).Google Scholar
- 17.M. Tuszewski, M. W. Binderbauer, D. Barnes, E. Garate, H. Guo, S. Putvinski, and A. N. Smirnov, patent No. US 20160276044A1 (2016).Google Scholar
- 18.F. Santini, Nucl. Fusion 46, 225 (2006).ADSCrossRefGoogle Scholar
- 19.J. Friedberg, Plasma Physics and Fusion Energy (Cambridge Univ. Press, Cambridge, 2007), Chap. 9.CrossRefGoogle Scholar
- 20.W. M. Stacey, Fusion Plasma Physics (Wiley, Weinheim, 2005), p. 296.CrossRefGoogle Scholar
- 21.K. Hubner, H. Bruhns, and K. Steinmetz, Phys. Lett. A 69, 269 (1978).ADSCrossRefGoogle Scholar
- 22.https://www.bnl.gov.Google Scholar
- 23.A. Asle Zaeem, IEEE Trans. Plasma Sci. 38, 2069 (2010).ADSCrossRefGoogle Scholar
- 24.M. M. Nevins and R. Swain, Nucl. Fusion 40, 865 (2000)ADSCrossRefGoogle Scholar
- 25.H.-S. Bosch and G. M. Hale, Nucl. Fusion 32, 611 (1992).ADSCrossRefGoogle Scholar
- 26.V. Damideh, A. A. Zaeem, A. Heidarnia, A. Sadighzadeh, M. A. Tafreshi, F. Abbasi Davani, M. Moradshahi, M. Bakhshzad Mahmoudi, and R. Damideh, J. Fusion Energy 31, 47 (2012).ADSCrossRefGoogle Scholar
- 27.A. Salehizadeh, A. Sadighzadeh, M. Sedaghat Movahhed, A. A. Zaeem, A. Heidarnia, R. Sabri, M. Bakhshzad Mahmoudi, H. Rahimi, S. Rahimi, E. Johari, M. Torabi, and V. Damideh, J. Fusion Energy 32, 293 (2013).ADSCrossRefGoogle Scholar