Skip to main content
Log in

Specific features of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense 500-ps-long laser pulse

  • Laser Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The properties of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense (1014 W/cm3) short (0.5 ps) 1.064-μm laser pulse were studied. It is found that, even at plasma densities exceeding the critical density, a small fraction of the incident laser radiation penetrates through the plasma in which the processes of density and temperature equalization still take place. The intensification (as compared to plasmas produced from denser foams and solid films) of transport processes in such plasma along and across the laser beam can be caused by the initial microheterogeneity of the solid target. The replacement of a small (10% by mass) part of the polymer with copper nanoparticles leads to a nearly twofold increase in the intensity of the plasma X-ray emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dunne, M. Borghesi, A. Iwase, et al., Phys. Rev. Lett. 75, 3858 (1995).

    Article  ADS  Google Scholar 

  2. S. Yu. Gus’kov, M. O. Koshevoi, V. B. Rozanov, et al., JETP Lett. 64, 502 (1996).

    Article  ADS  Google Scholar 

  3. A. E. Bugrov, S. Yu. Gus’kov, V. B. Rozanov, et al., JETP 84, 497 (1997).

    Article  ADS  Google Scholar 

  4. J. A. Koch, K. G. Estabrook, J. D. Bauer, et al., Phys. Plasmas 2, 3820 (1995).

    Article  ADS  Google Scholar 

  5. A. E. Bugrov, S. Yu. Gus’kov, V. B. Rozanov, et al., JETP 88, 441 (1999).

    Article  ADS  Google Scholar 

  6. A. E. Bugrov, I. N. Burdonskiy, I. K. Fasakhov, et al., Proc. SPIE 5228, 8 (2003).

    Article  ADS  Google Scholar 

  7. A. E. Bugrov, I. N. Burdonskii, V. V. Gavrilov, et al., Plasma Phys. Rep. 30, 143 (2004).

    Article  ADS  Google Scholar 

  8. N. G. Borisenko, A. A. Akunets, A. M. Khalenkov, et al., J. Russ. Laser Res. 28, 548 (2007).

    Article  Google Scholar 

  9. A. M. Khalenkov, N. G. Borisenko, V. N. Kondrashov, et al., Laser Part. Beams 24, 283 (2006).

    Article  ADS  Google Scholar 

  10. N. G. Borisenko, I. V. Akimova, A. I. Gromov, et al., J. Phys. IV (France) 133, 305 (2006).

    Article  Google Scholar 

  11. J. Limpouch, N. G. Borisenko, N. N. Demchenko, et al., J. Phys. IV (France) 133, 457 (2006).

    Article  Google Scholar 

  12. N. G. Borisenko, A. M. Khalenkov, V. Kmetik, et al., Fusion Sci. Technol. 51, 655 (2007).

    Google Scholar 

  13. S. Yu. Gus’kov, A. Karuzo, V. B. Rozanov, and S. Stranzhio, Quant. Electron. 30, 191 (2000).

    Article  ADS  Google Scholar 

  14. S. Stranzhio, A. Karuzo, S. Yu. Gus’kov, et al., Quant. Electron. 36, 424 (2006).

    Article  ADS  Google Scholar 

  15. N. G. Borisenko and Yu. A. Merkul’ev, in X Kharitonov Scientific Talks, Sarov, 2008, Book of Abstracts, Ed. by S. G. Garanin, p. 117.

  16. N. G. Borisenko and Yu. A. Merkuliev, J. Russ. Laser Res. 31, 256 (2010).

    Article  Google Scholar 

  17. C. Labaune, S. Depierreux, V. T. Tikhonchuk, et al., J. Phys. Conf. Ser. 244, 022021 (2010).

    Article  ADS  Google Scholar 

  18. A. E. Bugrov, I. N. Burdonskiy, O. L. Dedova, et al., Contrib. Plasma Phys. 45, 186 (2005).

    Article  ADS  Google Scholar 

  19. J. Limpouch, N. G. Borisenko, N. N. Demchenko, et al., in Proceedings of the 32nd EPS Conference on Plasma Physics, Tarragona, 2005, ECA 29C, O–2.022 (2005).

    Google Scholar 

  20. S. Yu. Gus’kov, N. V. Zmitrenko, I. V. Popov, et al., Quant. Electron. 30, 601 (2000).

    Article  ADS  Google Scholar 

  21. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Nauka, Moscow, 1987; CRC, Boca Raton, 1993).

    MATH  Google Scholar 

  22. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1966, 1967), Vols. 1, 2.

    Google Scholar 

  23. K. S. Gus’kov and S. Yu. Gus’kov, Quant. Electron. 31, 305 (2001).

    Article  ADS  Google Scholar 

  24. S. Yu. Gus’kov, S. Borodzyuk, M. Kalal, et al., Quant. Electron. 34, 989 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Orekhov.

Additional information

Original Russian Text © N.G. Borisenko, Yu.A. Merkul’ev, A.S. Orekhov, S. Chaurasia, S. Tripathi, D.S. Munda, L.J. Dhareshwar, V.G. Pimenov, E.E. Sheveleva, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 8, pp. 752–758.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisenko, N.G., Merkul’ev, Y.A., Orekhov, A.S. et al. Specific features of microheterogeneous plasma produced by irradiation of a polymer aerogel target with an intense 500-ps-long laser pulse. Plasma Phys. Rep. 39, 668–673 (2013). https://doi.org/10.1134/S1063780X13080035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13080035

Keywords

Navigation