Physics of Particles and Nuclei

, Volume 49, Issue 4, pp 674–677 | Cite as

Geo-Neutrinos and the Earth’s Internal Heat Flux

  • L. B. BezrukovEmail author
  • A. S. Kurlovich
  • B. K. Lubsandorzhiev
  • A. K. Mezhokh
  • V. P. Morgalyuk
  • V. V. Sinev
  • V. P. Zavarzina


Predictions of geo-neutrino fluxes and the Earth’s internal heat flux made by the Hydride Earth model are discussed. The prediction of geo-neutrino fluxes can be consistent with experimental measured fluxes. The predicted value of the Earth’s internal heat flux is significantly larger than the value experimentally obtained under the assumption that the main mode of heat transport is thermal conductivity. We consider another mode of heat transport in the Earth’s crust: heat transport by hot gases created in the Earth’s crust at great depth. We discuss also experimental data supporting this idea, particularly the temperature profiles obtained in the Kola superdeep borehole.



The authors are grateful to the organizing committee of The International Session-Conference of section of Nuclear Physics of the Physical Science Department of the Russian Academy of Sciences “Physics of Fundamental Interactions” dedicated to the 50th anniversary of the Baksan Neutrino Observatory (held June 6–8, 2017, KBR, Nalchik) for the invitation to present the talk. Also, the authors would like to thank Igor Tkachev (INR RAS) for fruitful discussions, Allen Caldwell (MPI) for the opportunity to give a talk at MPI and for fruitful discussions, Leo Stodolsky (MPI) for his invaluable remarks, and in particular for his question on how temperature profiles in continents should look in the presence of thermal energy transport by hot gases.


  1. 1.
    M. Agostini et al. (Borexino Collab.), “Spectroscopy of geoneutrinos from 2056 days of Borexino data,” Phys. Rev. D 92, 03110 (2015).CrossRefGoogle Scholar
  2. 2.
    A. Gando et al. (KamLAND Collab.), “Reactor on-off antineutrino measurement with KamLAND,” Phys. Rev. D 88, 033001 (2013); arXiv:1303.4667v2 [hep-ex].ADSCrossRefGoogle Scholar
  3. 3.
    G. Bellini, L. Ludhova, A. Ianni, F. Mantovani, and W. F. McDonough, “Geo-neutrinos,” Prog. Part. Nucl. Phys. 73, 1–34 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    Yu Huang, V. Chubakov, F. Mantovani, R. L. Rudnick, and W. F. McDonough, “A reference Earth model for the heat producing elements and associated geoneutrino flux,” Geochem., Geophys., Geosyst. 14, 2003–2029 (2013); arXiv:1301.0365v2[physics.geo-ph].ADSCrossRefGoogle Scholar
  5. 5.
    V. N. Larin, Hydridic Earth: The New Geology of Our Primordially Hydrogen-Rich Planet, Ed. by C. Warren Hunt (Polar Publishing, Calgary, Alberta, Canada, 1993).Google Scholar
  6. 6.
    H. Toulhoat, V. Beaumont, V. Zgonnik, N. Larin, and V. N. Larin, Chemical Differentiation of Planets: A Core Issue (2012); arXiv:1208.2909[astro-ph.EP].Google Scholar
  7. 7.
    L. Bezrukov, INR Preprint No. 1378/2014 (Inst. of Nuclear Research, Moscow, 2014); arXiv:1308.4163[astro-ph.EP].Google Scholar
  8. 8.
    CRC Handbook of Chemistry and Physics, 84th ed., Section 10: Atomic, Molecular and Optical Physics; Ionization Potentials of Atoms and Atomic Ions, Ed. by D. R. Lide (CRC Press, Boca Raton, Florida, 2003).Google Scholar
  9. 9.
    H. Toulhoat, V. Beaumont, V. Zgonnik, N. Larin, and V. N. Larin, Chemical Differentiation of Planets: A Core Issue, 2015; arXiv:1208.2909v2[astro-ph.EP].Google Scholar
  10. 10.
    L. B. Bezrukov, A. S. Kurlovich, B. K. Lubsandorzhiev, V. P. Morgalyuk, V. V. Sinev, and V. P. Zavarzina, “On geoneutrino,” EPJ Web Conf. (QUARKS–2016) 125, 02004 (2016).Google Scholar
  11. 11.
    V. V. Sinev, L. B. Bezrukov, E. A. Litvinovich, I. N. Machulin, M. D. Skorokhvatov, and S. V. Sukhotin, “Looking for antineutrino flux from 40K with large liquid scintillator detector,” Phys. Part. Nucl. 46, 186–189 (2015); arXiv:1405.3140[hep-ex].CrossRefGoogle Scholar
  12. 12.
    P. A. Brodsky, D. M. Guberman, V. I. Kazansky, O. L. Kuznetsov, V. B. Mazur, N. V. Militenko, F. P. Mitrofanov, A. F. Morozov, L. A. Pevzner, B. N. Chachaev, and Yu. N. Yakovlev, Cola Super Deep Hole. Scientific Results and Research Experience (Technoneftegaz, Moscow, 1998).Google Scholar
  13. 13.
    J. Hansen, M. Sato, P. Kharecha, and K. von Schuckmann, “Earth’s energy imbalance,” Atmos. Chem. Phys. 11, 13421–13449 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    V. D. Krotikov and V. S. Troitskyi, “Radio emission and nature of the Moon,” Soviet Physics – Uspekhi 6, 841–871 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. B. Bezrukov
    • 1
    Email author
  • A. S. Kurlovich
    • 1
  • B. K. Lubsandorzhiev
    • 1
  • A. K. Mezhokh
    • 1
  • V. P. Morgalyuk
    • 2
  • V. V. Sinev
    • 1
  • V. P. Zavarzina
    • 1
  1. 1.Institute for Nuclear Research of Russian Academy of SciencesMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of SciencesMoscowRussia

Personalised recommendations