Advertisement

Physics of Particles and Nuclei

, Volume 49, Issue 4, pp 787–792 | Cite as

Low-Background Method of Isotope Markers for Measuring the Efficiency of Intercalation of Graphite by Potassium Atoms

  • Z. A. Ahmatov
  • A. M. Gangapshev
  • V. S. Romanenko
  • A. Kh. Khokonov
  • V. V. Kuzminov
Article
  • 13 Downloads

Abstract

The result of low-background measurements of the gamma activity of graphite-potassium intercalated sample is presented. A germanium gamma spectrometer, used for measurements, was located in the low-background chamber of Baksan Neutrino Observatory. For 384 hours of exposure, 768 decays of K-40 isotope nuclei were registered. This activity corresponds to 85 μg/cm2 potassium atoms embedded in to graphite lattice. A computer simulation of the intercalation process and the gamma-ray spectrum set is also presented. The accuracy of the potassium concentration determination can be brought to 10–11–10–12 g/g for mixture enriched with K-40 isotope.

Notes

ACKNOWLEDGMENTS

The work was supported partially by grants: RFBR no. 16-29-13011 ofi_m, RFBR no. 18-02-01042 a and Foundation for Assistance to Small Innovative Enterprises no. 0038507 UMNIK 17-12 (a).

REFERENCES

  1. 1.
    D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth., N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, “Experimental review of graphene,” Condens. Matter Phys. 2012, 56 (2012).Google Scholar
  2. 2.
    Z. A. Akhmatov, A. Kh. Khokonov, and V. A. Tarala, “Vibrational dynamics of pristine and the hydrogenated graphene surface,” Bull. Russ. Acad. Sci.: Phys. 80, 1341–1343 (2016).CrossRefGoogle Scholar
  3. 3.
    D. Budjase, A. M. Gangapshev, V. V. Kuzminov, J. Gasparro, W. Hampel, M. Heisel, G. Heusser, M. Hult, M. Laubenstein, W. Maneschg, H. Simgen, A. A. Smolnikov, C. Tomei, and S. I. Vasiliev, “Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment,” Appl. Radiat. Isot. 67, 755–758 (2009).CrossRefGoogle Scholar
  4. 4.
    V. V. Kuzminov, V. V. Alekseenko, I. R. Barabanov, R. A. Etezov, A. M. Gangapshev, Yu. M. Gavrilyuk, A. M. Gezhaev, V. V. Kazalov, A. Kh. Khokonov, S. I. Panasenko, and S. S. Ratkevich, “Some features and results of thermal neutron background measurements with the [ZnS(Ag) + 6 LiF] scintillation detector,” Nucl. Instrum. Methods A 841, 156–161 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).ADSCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Tersoff, “Empirical interatomic potential for carbon, with applications to amorphous carbon,” Phys. Rev. Lett. 61, 2879–2882 (1988).ADSCrossRefGoogle Scholar
  7. 7.
    M. S. Daw and M. I. Baskes, “Embedded atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys. Rev. B 29, 6443–6453 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys,” Phys. Rev. B 33, 7983–7991 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    J. Purewal, J. B. Keith, C. A. Channing, C. M. Brown, M. Tyagi, and B. J. Fultz, “Hydrogen diffusion in potassium intercalated graphite studied by quasielastic neutron scattering,” J. Chem. Phys. 137, 1–10 (2012).CrossRefGoogle Scholar
  10. 10.
    HyperChem for Windows Reference Manual (Hypercube, Inc., 1999). http://www.hyper.com.Google Scholar
  11. 11.
    S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, and H. Burkhardt, “Geant4—a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250–303 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Z. A. Ahmatov
    • 1
  • A. M. Gangapshev
    • 1
    • 2
  • V. S. Romanenko
    • 1
  • A. Kh. Khokonov
    • 1
    • 2
  • V. V. Kuzminov
    • 2
  1. 1.Kabardino-Balkarian State UniversityNalchikRussia
  2. 2.Institute for Nuclear Research RASMoscowRussia

Personalised recommendations