Skip to main content
Log in

Spin polarized 3He: From basic research to medical applications

  • Conference Proceedings The 20th International Symposium on Spin Physics (SPIN2012) JINR, Dubna September 17–22, 2012
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Polarization of 3He gas by means of optical pumping is well known since the early 1960s with first applications in fundamental physics. Some thirty years later it was discovered, that one can use hyperpolarized 3He as contrast agent for magnetic resonance imaging of the lung. The wide interest in this new method made it necessary to find ways of polarizing 3He in large quantities with high polarization degrees. A high performance polarizing facility has been developed at the University of Mainz, designed for centralized production of hyperpolarized 3He gas. We present the Mainz concept as well as some examples of numerous applications of spin polarized 3He in fundamental research and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. Colegrove, L. D. Schearer, and G. K. Walters, Phys. Rev. 132, 2561 (1963).

    Article  ADS  Google Scholar 

  2. P. J. Nacher and M. Leduc, J. Phys. 46, 2057 (1985).

    Article  Google Scholar 

  3. B. Blankleider and R. M. Woloshyn, Phys. Rev. C 29, 538 (1984).

    Article  ADS  Google Scholar 

  4. J. Krimmer et al., Nucl. Instr. Methods Phys. Res. A 611, 18 (2009).

    Article  ADS  Google Scholar 

  5. J. Krimmer et al., Nucl. Instr. Methods Phys. Res. A 648, 35 (2011).

    Article  ADS  Google Scholar 

  6. W. Heil et al., Nucl. Instr. Methods Phys. Res. A 485, 551 (2002).

    Article  ADS  Google Scholar 

  7. A. Ioffe, E. Babcock, and Th. Gutberlet, J. Phys., Conf. Ser. 294, 011001 (2011).

    Article  ADS  Google Scholar 

  8. M. S. Albert et al., Nature 370, 199 (1994).

    Article  ADS  Google Scholar 

  9. M. Ebert et al., The Lancet 347, 1297 (1996).

    Article  Google Scholar 

  10. M. Leduc and P. J. Nacher, CP770, At. Phys. 19, 381 (2005).

    Google Scholar 

  11. E. W. Otten, Europhys. News 35, 16 (2004).

    Article  ADS  Google Scholar 

  12. M. Terekhov et al., J. Magn. Res. Imag. 32, 887 (2010).

    Article  Google Scholar 

  13. M. Batz et al., J. Res. Nat. Inst. Stand. Technol. 110, 293 (2005).

    Article  Google Scholar 

  14. J. Schmiedeskamp et al., Eur. Phys. J. D 38, 427 (2006).

    Article  ADS  Google Scholar 

  15. S. Hiebel et al., J. Magn. Res. 204, 37 (2010).

    Article  ADS  Google Scholar 

  16. M. Güldner et al., J. Phys., Conf. Ser. 294, 012006 (2011).

    Article  ADS  Google Scholar 

  17. Z. Salhi et al., Magn. Res. Med. 67, 1758 (2012).

    Article  Google Scholar 

  18. C. Mrozik et al., J. Phys., Conf. Ser. 294, 012007 (2011).

    Article  ADS  Google Scholar 

  19. Manufacturing authorisation No. 2010/128/55/M by the State Office for Social Matters, Youth and Pensions, Rhineland Palatinate, Germany.

  20. T. E. Parker, Metrologia 47, 1 (2010).

    Article  ADS  Google Scholar 

  21. F. Allmendinger et al., Hyperf. Interact. 215, 15 (2013).

    Article  ADS  Google Scholar 

  22. V. A. Kostelecký and C. D. Lane, Phys. Rev. D 60, 116010 (1999).

    Article  ADS  Google Scholar 

  23. J. F. Moody and F. Wilczek, Phys. Rev. D 30, 130 (1984).

    Article  ADS  Google Scholar 

  24. Th. Schmidt, Zeitschrift für Physik A 106, 358 (1937).

    Article  ADS  Google Scholar 

  25. M. A. Rosenberry and T. E. Chupp, Phys. Rev. Lett. 86, 22 (2001).

    Article  ADS  Google Scholar 

  26. C. Gemmel et al., Eur. Phys. J. D 57, 303 (2010).

    Article  ADS  Google Scholar 

  27. S. M. Kay, in Fundamentals of Statistical Signal Processing: Estimation Theory, Vol. 1 (Prentice Hall, New Jersey, 1993).

    MATH  Google Scholar 

  28. G. D. Cates, S. R. Schaefer, and W. Happer, Phys. Rev. A 37, 2887 (1988).

    Article  ADS  Google Scholar 

  29. M. Burghoff et al., Neurol. Clin. Neurophys. 67, 1 (2004).

    Google Scholar 

  30. A. Schnabel et al., Neurol. Clin. Neurophys. 71, 1 (2004).

    Google Scholar 

  31. C. Gemmel et al., Phys. Rev. D 82, 111901 (2010).

    Article  ADS  Google Scholar 

  32. F. Allmendinger et al., in press.

  33. I. Antoniadis et al., Comptes Rendus Physique 12, 755 (2011).

    Article  ADS  Google Scholar 

  34. M. Burghoff et al., J. Phys., Conf. Ser. 295, 012017 (2011).

    Article  ADS  Google Scholar 

  35. K. Tullney et al., Phys. Rev. Lett. 111, 100801 (2013).

    Article  ADS  Google Scholar 

  36. W. Heil et al., Ann. Phys. 525, 519 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karpuk.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpuk, S., Allmendinger, F., Burghoff, M. et al. Spin polarized 3He: From basic research to medical applications. Phys. Part. Nuclei 44, 904–908 (2013). https://doi.org/10.1134/S1063779613060105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613060105

Keywords

Navigation