Physics of Atomic Nuclei

, Volume 81, Issue 1, pp 43–50 | Cite as

γ* → γf2(1270) and γ* → γa2(1320) Transition Form Factors in e+e Collisions

Elementary Particles and Fields Theory
  • 4 Downloads

Abstract

The γ* → γf2(1270) and γ* → γa2(1320) transition form factors are considered up to high energies, along with the cross sections for the respective processes e+e → γ* → f2γ and e+e → γ* → a2γ. It is shown that QCD asymptotic behavior of the amplitudes for the reactions e+e → γ* → f2γ and e+e → γ* → a2γ can be reached after the compensation of the contributions of the ρ(770) and ω(782) mesons with the contributions of their radial excitations. The ratio σ(e+e → γ* → f2γ)/σ(e+e → γ* → a2γ) ≈ 25/9, obtained on the basis of the two-quark model of a2 and f2 and within QCD, is used to determine σ(e+e → γ* → a2γ) at high energies. Recent data from the Belle detector on the γ*(Q2)γ → f2 transition over the region extending up to Q2 = 30 GeV2 are taken into account. A substantial improvement of experimental accuracies is required for a detailed comparison of our predictions with experimental data at high energies. A recent measurement of the e+ef2γ → π+πγ cross section at 10.58 GeV with the BaBar detector gives grounds to hope for this.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BaBar Collab. ( B. Aubert et al.), Phys. Rev. D 80, 052002 (2009)ADSCrossRefGoogle Scholar
  2. 1a.
    P. del Amo Sanchez et al., Phys. Rev. D 84, 052001 (2011)ADSCrossRefGoogle Scholar
  3. 1b.
    Belle Collab. ( S. Uehara et al.), Phys. Rev. D 86, 092007 (2012).ADSCrossRefGoogle Scholar
  4. 2.
    N. N. Achasov, A. V. Kiselev, and G. N. Shestakov, Phys. At. Nucl. 79, 397 (2016); arXiv: 1504.07346.CrossRefGoogle Scholar
  5. 3.
    Belle Collab. ( M. Masuda et al.), Phys. Rev. D 93, 032003 (2016), arXiv: 1508.06757.ADSCrossRefGoogle Scholar
  6. 4.
    N. N. Achasov, A. V. Kiselev, and G. N. Shestakov, JETP Lett. 102, 571 (2015); arXiv: 1509.09150.ADSCrossRefGoogle Scholar
  7. 5.
    N. N. Achasov and A. V. Kiselev, EPJWeb Conf. 125, 04003 (2016).CrossRefGoogle Scholar
  8. 6.
    V. M. Braun, N. Kivel, M. Strohmaier, and A. A. Vladimirov, J. High Energy. Phys. 1606, 39 (2016); arXiv: 1603.09154.ADSCrossRefGoogle Scholar
  9. 7.
    BaBar Collab. ( J. P. Lees et al.), Phys. Rev. D 92, 072015 (2015).ADSCrossRefGoogle Scholar
  10. 8.
    N. N. Achasov, A. I. Goncharenko, A. V. Kiselev, and E. V. Rogozina, Phys. Rev. D 88, 114001 (2013); Phys. Rev. D 89 059906 (E) (2014).ADSCrossRefGoogle Scholar
  11. 9.
    N. N. Achasov and V. A. Karnakov, Z. Phys. C30, 141 (1986).ADSGoogle Scholar
  12. 10.
    Particle Data Group ( K. A. Olive et al.), Chin. Phys. C 38, 090001 (2014).CrossRefGoogle Scholar
  13. 11.
    N. N. Achasov and A. A. Kozhevnikov, Phys. Rev. D 55, 2663 (1997); Phys. Rev. D 57, 4334 (1998).ADSCrossRefGoogle Scholar
  14. 12.
    V. L. Chernyak and A. R. Zhitnitsky, Phys. Rep. 112, 173 (1984).ADSCrossRefGoogle Scholar
  15. 13.
    V. N. Baier and A. G. Grozin, Sov. J. Part. Nucl. 16, 1 (1985).Google Scholar
  16. 14.
    P. Kroll, Eur.Phys. J. C 77, 95 (2017).ADSCrossRefGoogle Scholar
  17. 15.
    M. Diehl, T. Gousset, and B. Pire, Phys. Rev. D 62, 073014 (2000).ADSCrossRefGoogle Scholar
  18. 16.
    E. Witten, Nucl. Phys. B 160, 57 (1979).ADSMathSciNetCrossRefGoogle Scholar
  19. 17.
    S. S. Afonin, Phys. Lett. B 576, 122 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Theoretical Physics, Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations