Journal of Experimental and Theoretical Physics

, Volume 129, Issue 6, pp 1062–1069 | Cite as

Magnetic Properties and Spin Crossover in Transition Metal Oxides with d5 Ions at High Pressures

  • Yu. S. OrlovEmail author
  • S. V. Nikolaev
  • S. G. Ovchinnikov


We analyze the influence of cooperative effects on the magnetic properties and spin crossover between the high-spin (HS) term S = 5/2 and low-spin (LS) term S = 1/2 in Mott–Hubbard dielectrics with 3d5 ions under high pressures. Two cooperation mechanisms (superexchange interaction and effective interaction via the elastic system) are considered. The sign of the exchange interaction changes because of the crossover from the antiferromagnetic in the HS state to the ferromagnetic in the LS state. In view of the large difference between the ionic radii of the HS and LS states, the systems with spin crossover acquire an additional strong coupling via the elastic system. Using the Hubbard operator representation and considering the electronic states of the two terms simultaneously, we obtain the effective Hamiltonian with allowance for the cooperative effects. The magnetic phase diagram and the spin crossover are investigated in the mean field approximation. It is shown that the inclusion of cooperative effects at low temperatures leads to a first-order phase transition between the antiferromagnetic HS state and the ferromagnetic LS state. At higher temperatures, more complicated sequences of phase transitions are possible upon an increase in pressure, including the HS paramagnet–HS antiferromagnet–LS paramagnet and HS antiferromagnet–LS paramagnet–LS ferromagnet transitions.



This study was supported by the Russian Science Foundation (project no. 18-12-00022).


  1. 1.
    I. S. Lyubutin and A. G. Gavriliuk, Phys. Usp. 52, 989 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).ADSCrossRefGoogle Scholar
  3. 3.
    I. Ohkoshi, K. Imoto, Y. Tsunobuchi, et al., Nat. Chem. 3, 564 (2011).CrossRefGoogle Scholar
  4. 4.
    S. V. Streltsov and D. I. Khomskii, Phys. Usp. 60, 1121 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    T. Saha-Dasgupta and P. Oppeneer, MRS Bull. 39, 614 (2014).CrossRefGoogle Scholar
  6. 6.
    C. M. Jureschi, J. Linares, A. Rotaru, et al., Sensors 15, 2388 (2015).CrossRefGoogle Scholar
  7. 7.
    R. M. Wentzcovitch, J. F. Justo, Z. Wu, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 8447 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S. G. Ovchinnikov, T. M. Ovchinnikova, P. G. Dyad’kov, V. V. Plotkin, and K. D. Litasov, JETP Lett. 96, 129 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    R. Sinmyo, C. Mccammon, and L. Dubrovinsky, Am. Mineralog. 102, 1263 (2017).Google Scholar
  10. 10.
    S. V. Streltsov, A. O. Shorikov, S. L. Skornyakov, et al., Sci. Rep. 7, 13005 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    A. I. Nesterov, Yu. S. Orlov, S. G. Ovchinnikov, and S. V. Nikolaev, Phys. Rev. B 96, 134103 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    I. S. Lyubutin, V. V. Struzhkin, A. A. Mironovich, et al., Proc. Natl. Acad. Sci. U. S. A. 110, 7142 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, Z. V. Pchelkina, I. A. Nekrasov, M. A. Korotin, and V. I. Anisimov, J. Exp. Theor. Phys. 99, 559 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    V. V. Val’kov and S. G. Ovchinnikov, Sov. J. Theor. Math. Phys. 50, 306 (1982).CrossRefGoogle Scholar
  15. 15.
    V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, J. Exp. Theor. Phys. 127, 713 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    N. O. Lipari, C. B. Duke, and L. Pietronero, J. Chem. Phys. 65, 1165 (1976).ADSCrossRefGoogle Scholar
  17. 17.
    A. Painelli and A. Girlando, J. Chem. Phys. 84, 5655 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. S. Orlov, L. A. Solovyev, V. A. Dudnikov, et al., Phys. Rev. B 88, 235105 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    A. I. Nesterov and S. G. Ovchinnikov, JETP Lett. 90, 530 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, S. G. Ovchinnikov, and V. A. Sarkissian, J. Exp. Theor. Phys. 100, 688 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    D. M. Wilson and S. Broersma, Phys. Rev. B 14, 1977 (1976).ADSCrossRefGoogle Scholar
  22. 22.
    M. J. Massey, R. Merlin, and S. M. Girvin, Phys. Rev. Lett. 69, 2299 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    V. A. Sarkisyan, I. A. Troyan, I. S. Lyubutin, A. G. Gavrilyuk, and A. F. Kashuba, JETP Lett. 76, 664 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    A. G. Gavriliuk, I. A. Trojan, R. Boehler, M. Eremets, A. Zerr, I. S. Lyubutin, and V. A. Sarkisyan, JETP Lett. 75, 23 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    I. A. Troyan, M. I. Eremets, A. G. Gavrilyuk, I. S. Lyu-butin, and V. A. Sarkisyan, JETP Lett. 78, 13 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    S. G. Ovchinnikov, JETP Lett. 77, 676 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    S. G. Ovchinnikov and V. N. Zabluda, J. Exp. Theor. Phys. 98, 135 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    K. Parlinski, Eur. Phys. J. B 27, 283 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    A. G. Gavriliuk, I. A. Trojan, S. G. Ovchinnikov, I. S. Lyubutin, and V. A. Sarkisyan, J. Exp. Theor. Phys. 99, 566 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    I. A. Troyan, A. G. Gavrilyuk, S. G. Ovchinnikov, I. S. Lyubutin, and N. V. Kazak, JETP Lett. 94, 748 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, Nature (London, U.K.) 525, 73 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    I. Troyan, A. Gavriliuk, R. Ruffer, A. Chumakov, A. Mironovich, I. Lyubutin, D. Perekalin, A. Drozdov, and M. Eremets, Science (Washington, DC, U. S.) 351 (6279), 1303 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V. Struzhkin, and R. J. Hemley, Phys. Rev. Lett. 122, 027001 (2019).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • Yu. S. Orlov
    • 1
    Email author
  • S. V. Nikolaev
    • 1
  • S. G. Ovchinnikov
    • 2
  1. 1.Kirensky Institute of Physics, Federal Research Center “Krasnoyarsk Science Center,” Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations