Advertisement

New M(2 + δ1)X(2 + δ2) Superstructure of Ordered Nanocrystalline Titanium Monoxide and the Problem of Transition States

  • M. G. KostenkoEmail author
  • S. V. Sharf
SOLIDS AND LIQUIDS
  • 11 Downloads

Abstract

The results of experiments on the vacancy ordering in nanocrystalline nonstoichiometric titanium monoxide TiOy (space group Fm\(\bar {3}\)m), which is accompanied by the formation of the orthorhombic Ti9O10 phase (space group Immm), are considered. The vacancy distribution in the ordered phase is described by a two-sublattice-ordering M(2 + δ1)X(2 + δ2) superstructure. The disorder–order (TiOy–Ti(2 + δ1)O(2 + δ2)) phase transition is accompanied by symmetry distortions along non-Lifshitz star {k4}. When ordering, vacancies concentrate in every third (110) plane of the basic B1-type structure. The deviation of stoichiometry is caused by different vacancy concentrations in the defect planes in the metallic and nonmetallic sublattices (parameters δ1 and δ2, respectively). The new class of M(n + δ1)X(n + δ2) superstructures is shown to generate numerous order–disorder transition state models, which cannot be described in terms of the mean-field approximation. At δ1 = δ2 = 0.5, the orthorhombic M(2 + δ1)X(2 + δ2) structure is a particular case of the partly disordered monoclinic M5X5 superstructure (space group C2/m(A2/m)), which is characteristic of a coarse-grained state.

Notes

ACKNOWLEDGMENTS

The calculations were carried out on the Uran supercomputer of the Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences.

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 17-02-00037.

REFERENCES

  1. 1.
    A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds. Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001).Google Scholar
  2. 2.
    A. I. Gusev, Nonstoichiometry and Chaos, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  3. 3.
    D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Marlin, Nature (London, U.K.) 210, 934 (1966).CrossRefGoogle Scholar
  4. 4.
    D. Watanabe, J. R. Castles, A. Jostsons, and A. S. Marlin, Acta Crystallogr. 23, 307 (1967).CrossRefGoogle Scholar
  5. 5.
    D. Watanabe, O. Terasaki, A. Jostsons, and J. R. Castles, in The Chemistry of Extended Defects in Non-Metallic Solids, Ed. by L. Eyring and M. O’Keefe (North-Holland, Amsterdam, 1970).Google Scholar
  6. 6.
    J. L. Murray and H. A. Wriedt, Bull. Alloy Phase Diagr. 8, 148 (1987).CrossRefGoogle Scholar
  7. 7.
    A. I. Gusev and A. A. Valeeva, JETP Lett. 96, 364 (2012).CrossRefGoogle Scholar
  8. 8.
    A. I. Gusev, J. Exp. Theor. Phys. 117, 293 (2013).CrossRefGoogle Scholar
  9. 9.
    E. Hilti, Naturwissensch. 55, 130 (1968).CrossRefGoogle Scholar
  10. 10.
    A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, JETP Lett. 71, 621 (2000).CrossRefGoogle Scholar
  11. 11.
    A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, Inorg. Mater. 37, 603 (2001).CrossRefGoogle Scholar
  12. 12.
    A. I. Gusev, J. Exp. Theor. Phys. 117, 293 (2013).CrossRefGoogle Scholar
  13. 13.
    M. G. Kostenko and A. A. Rempel, J. Exp. Theor. Phys. 125, 235 (2017).CrossRefGoogle Scholar
  14. 14.
    A. I. Gusev, J. Exp. Theor. Phys. 120, 851 (2015).CrossRefGoogle Scholar
  15. 15.
    D. Watanabe and O. Terasaki, J. Phys. Soc. Jpn. 25, 292 (1968).CrossRefGoogle Scholar
  16. 16.
    A. I. Gusev, JETP Lett. 74, 91 (2001).CrossRefGoogle Scholar
  17. 17.
    A. I. Gusev, Phys. Usp. 57, 839 (2014).CrossRefGoogle Scholar
  18. 18.
    A. A. Valeeva and M. G. Kostenko, Nanosyst.: Phys., Chem., Math. 8, 816 (2017).Google Scholar
  19. 19.
    A. A. Valeeva, S. Z. Nazarova, and A. A. Rempel, JETP Lett. 101, 258 (2015).CrossRefGoogle Scholar
  20. 20.
    T. Fujimura et al., High Press. Res. 1, 213 (1989).CrossRefGoogle Scholar
  21. 21.
    A. A. Rempel et al., Sci. Rep. 7, 10769 (2017).CrossRefGoogle Scholar
  22. 22.
    A. A. Rempel and A. I. Gusev, Phys. Status Solidi B 130, 413 (1985).CrossRefGoogle Scholar
  23. 23.
    M. G. Kostenko, A. A. Valeeva, and A. A. Rempel, J. Exp. Theor. Phys. 111, 786 (2010).CrossRefGoogle Scholar
  24. 24.
    M. G. Kostenko and A. A. Rempel, J. Exp. Theor. Phys. 115, 999 (2012).CrossRefGoogle Scholar
  25. 25.
    M. G. Kostenko, A. A. Rempel, and A. V. Lukoyanov, J. Exp. Theor. Phys. 116, 945 (2013).CrossRefGoogle Scholar
  26. 26.
    A. I. Gusev, JETP Lett. 74, 91 (2001).CrossRefGoogle Scholar
  27. 27.
    International Tables for X-ray Crystallography, Vol. A: Space Group Symmetry, Ed. by T. Hahn (Springer, Dordrecht, 2005), p. 132.Google Scholar
  28. 28.
    A. G. Khachaturyan, The Theory of Phase Transformation and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].Google Scholar
  29. 29.
    W. L. Bragg and E. J. Williams, Proc. R. Soc. London 145, 699 (1934).CrossRefGoogle Scholar
  30. 30.
    M. D. Banus, and M. D. Reed, and A. J. Strauss, Phys. Rev. B 5, 2775 (1972).CrossRefGoogle Scholar
  31. 31.
    A. I. Gusev, A. S. Kurslov, and A. A. Rempel, JETP Lett. 101, 533 (2015).CrossRefGoogle Scholar
  32. 32.
    M. G. Kostenko, A. A. Valeeva, and A. A. Rempel, Mendeleev Commun. 22, 245 (2012).CrossRefGoogle Scholar
  33. 33.
    M. G. Kostenko and A. A. Rempel, Phys. Solid State 52, 776 (2010).CrossRefGoogle Scholar
  34. 34.
    M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, JETP Lett. 102, 85 (2015).CrossRefGoogle Scholar
  35. 35.
    M. G. Kostenko, A. A. Rempel, S. V. Sharf, and A. V. Lukoyanov, JETP Lett. 97, 616 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Landau Institute of Theoretical Physics, Russian Academy of SciencesChernogolovkaRussia
  3. 3.Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations