Structural, Magnetic, and Thermodynamic Properties of Ordered and Disordered Cobaltite Gd0.1Sr0.9CoO3 – δ

  • V. A. Dudnikov
  • N. V. Kazak
  • Yu. S. OrlovEmail author
  • S. N. Vereshchagin
  • S. Yu. Gavrilkin
  • A. Yu. Tsvetkov
  • M. V. Gorev
  • A. A. Veligzhanin
  • A. L. Trigub
  • I. O. Troyanchuk
  • S. G. Ovchinnikov


The effect of cationic and anionic orderings on the crystal structure and magnetic properties of substituted rare-earth cobaltites Gd0.1Sr0.9CoO3 – δ was studied using X-ray diffraction, measurement of XANES spectra, and magnetic and thermodynamic characteristics. The effects of ordering cause a decrease in symmetry to tetragonal and a distortion of the coordination octahedra of CoO6. Anomalous magnetic and thermodynamic quantities are observed at 260 and 360 K, respectively, for disordered and ordered samples. The XANES spectra measured at the CoK edge did not reveal a noticeable shift in the absorption edge compared with the spectrum of original GdCoO3. This suggests that the charge compensation process is associated not only with a change in the electronic state of cobalt ions, but also with the emergence of holes in the 2p states of oxygen.



The authors are grateful to L.A. Solov'ev for providing X-ray diffraction data and to M.S. Platunov for assistence in measurements of X-ray spectra.


This work was supported by the Russian Foundation for Basic Research (grant nos. 17-02-00826, 16-02-00507, and 18-52-00017 Bel_a) and by the Council on Grants of the President of the Russian Federation (SP-1844.2016.1). X-ray spectra were recorded using the equipment of a unique scientific facility Kurchatov Synchrotron Radiation Source financed by the Ministry of Education and Science of the Russian Federation (project ID RFMEFI61917X0007).


  1. 1.
    N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).CrossRefGoogle Scholar
  2. 2.
    M. James, L. Morales, and K. Wallwork, Phys. B (Amsterdam, Neth.) 199, 385 (2006).Google Scholar
  3. 3.
    M. James, T. Tedesco, D. J. Cassidy, and R. L. Withers, Mater. Res. Bull. 40, 990 (2005).CrossRefGoogle Scholar
  4. 4.
    I. O. Troyanchuk, D. V. Karpinsky, M. V. Bushinsky, V. Sikolenko, V. Efimov, A. Cervellino, and B. Raveau, J. Appl. Phys. 112, 013916 (2012).CrossRefGoogle Scholar
  5. 5.
    A. M. Balagurov, I. A. Bobrikov, D. V. Karpinsky, I. O. Troyanchuk, V. Yu. Pomyakushin, and D. V. Sheptyakov, JETP Lett. 88, 531 (2008).CrossRefGoogle Scholar
  6. 6.
    S. N. Vereshchagin, L. A. Solovyov, E. V. Rabchevskii, V. A. Dudnikov, S. G. Ovchinnikov, and A. G. Anshits, Chem. Commun. 50, 6112 (2014).CrossRefGoogle Scholar
  7. 7.
    R. Liu, Y. Xuan, and Y. Q. Jia, Mater. Chem. Phys. 57, 81 (1998).CrossRefGoogle Scholar
  8. 8.
    L. Mogni, F. Prado, C. Jiménez, and A. Caneiro, Solid State Ionics 240, 19 (2013).CrossRefGoogle Scholar
  9. 9.
    Q. Yin and Y. S. Lin, Solid State Ionics 178, 83 (2007).CrossRefGoogle Scholar
  10. 10.
    Z. H. Yang and Y. S. Lin, Solid State Ionics 176, 89 (2005).CrossRefGoogle Scholar
  11. 11.
    V. A. Dudnikov, S. G. Ovchinnikov, Yu. S. Orlov, N. V. Kazak, K. R. Michel, G. S. Patrin, and G. Yu. Yurkin, J. Exp. Theor. Phys. 114, 841 (2012).CrossRefGoogle Scholar
  12. 12.
    S. G. Ovchinnikov, Yu. S. Orlov, V. A. Dudnikov, S. N. Vereshchagin, and N. S. Perov, J. Magn. Magn. Mater. 383, 162 (2015).CrossRefGoogle Scholar
  13. 13.
    R. D. Shannon, Acta Crystallogr., A 32, 751 (1976).CrossRefGoogle Scholar
  14. 14.
    M. S. Platunov, V. A. Dudnikov, Yu. S. Orlov, N. V. Kazak, L. A. Solovyov, Ya. V. Zubavichus, A. A. Veligzhanin, P. V. Dorovatovskii, S. N. Vereshchagin, K. A. Shaykhutdinov, and S. G. Ovchinnikov, JETP Lett. 103, 196 (2016).CrossRefGoogle Scholar
  15. 15.
    Yu. S. Orlov, V. A. Dudnikov, M. V. Gorev, S. N. Vereshchagin, L. A. Solov’ev, and S. G. Ovchinnikov, JETP Lett. 103, 607 (2016).CrossRefGoogle Scholar
  16. 16.
    J. W. Visser, J. Appl. Crystallogr. 2, 89 (1969).CrossRefGoogle Scholar
  17. 17.
    H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).CrossRefGoogle Scholar
  18. 18.
    L. A. Solovyov, J. Appl. Crystallogr. 37, 743 (2004).CrossRefGoogle Scholar
  19. 19.
    K. Conder, E. Pomjakushina, A. Soldatov, and E. Mitberg, Mater. Res. Bull. 40, 257 (2005).CrossRefGoogle Scholar
  20. 20.
    O. Haas, R. Struis, and J. M. McBreen, J. Solid State Chem. 177, 1000 (2004).CrossRefGoogle Scholar
  21. 21.
    G. Thornton, I. W. Owen, and G. P. Diakun, J. Phys.: Condens. Matter 3, 417 (1991).Google Scholar
  22. 22.
    M. G. Kim, Y. S. Im, E. J. Oh, K. H. Kim, and C. H. Yo, Phys. B (Amsterdam, Neth.) 229, 338 (1997).Google Scholar
  23. 23.
    V. A. Dudnikov, D. A. Velikanov, N. V. Kazak, C. R. Michel, J. Bartolome, A. Arauzo, S. G. Ovchinnikov, and G. S. Patrin, Phys. Solid State 54, 79 (2012).CrossRefGoogle Scholar
  24. 24.
    N. B. Ivanova, J. Bartolomé, A. Figueroa, J. Blasco, A. Arauzo, M. S. Platunov, V. V. Rudenko, and N. V. Kazak, Solid State Phenom. 168-–169, 501 (2011).Google Scholar
  25. 25.
    T. N. Vasil’chikova, T. G. Kuz’mova, A. A. Kamenev, A. R. Kaul’, and A. N. Vasil’ev, JETP Lett. 97, 34 (2013).CrossRefGoogle Scholar
  26. 26.
    Z. Hu, Hua Wu, M. W. Haverkort, H. H. Hsieh, H.‑J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 92, 207402 (2004).CrossRefGoogle Scholar
  27. 27.
    M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. A. Dudnikov
    • 1
  • N. V. Kazak
    • 1
  • Yu. S. Orlov
    • 1
    • 2
    Email author
  • S. N. Vereshchagin
    • 3
  • S. Yu. Gavrilkin
    • 4
  • A. Yu. Tsvetkov
    • 4
  • M. V. Gorev
    • 1
  • A. A. Veligzhanin
    • 5
  • A. L. Trigub
    • 5
  • I. O. Troyanchuk
    • 6
  • S. G. Ovchinnikov
    • 1
    • 2
  1. 1.Kirensky Institute of Physics, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  4. 4.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  5. 5.National Research Center Kurchatov InstituteMoscowRussia
  6. 6.Scientific and Practical Materials Research Center, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations