Advertisement

Energy Conservation in Distributed Interference as a Guarantee for Detecting a Detector Blinding Attack in Quantum Cryptography

  • S. N. MolotkovEmail author
ATOMS, MOLECULES, OPTICS

Abstract

An avalanche single-photon detector blinding attack is one of the methods for quantum hacking of quantum key distribution (QKD) systems. The attack was experimentally demonstrated for both phase- and polarization-encoded QKD systems. During this attack, an eavesdropper knows the entire key, does not produce errors and саnnot be detected. However, the phase encoding has neglected some significant features of the photocount statistics in the receiving party. It is shown in the paper at the level of fundamental principles that this attack changes the photocount statistics and leads to the detection of an eavesdropper. Expressions for the secret key length are obtained for this attack. This does not require any changes in the design and control electronics of the phase-encoded QKD system, and only changes in processing the results of registration of quantum states are sufficient. At the same time, the secret key vulnerability and compromise in polarization-encoded QKD systems is an existing fact rather than a potential menace.

Notes

ACKNOWLEDGMENTS

The author thanks his colleagues from the Academy of Cryptography for their constant support and discussions and also K.A. Balygin, A.N. Klimov, S.P. Kulik, and K.S. Kravtsov for numerous discussions.

This work was supported by the Russian Science Foundation (project no. 16-12-00015, continuation).

REFERENCES

  1. 1.
    L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 686 (2010); arXiv:1008.4593.Google Scholar
  2. 2.
    A. Vakhitov, V. Makarov, and D. R. Hjelme, J. Mod. Opt. 48, 2023 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313 (2006); arXiv: 0511032.Google Scholar
  4. 4.
    V. Makarov and J. Skaar, Quant. Inform. Comp. 8, 0622 (2008); arXiv:0702262.Google Scholar
  5. 5.
    V. Makarov, New J. Phys. 11, 065003 (2009); arXiv:0707.3987.ADSCrossRefGoogle Scholar
  6. 6.
    L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 801 (2010); arXiv:1012. 0476.Google Scholar
  7. 7.
    L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Opt. Express 18, 27938 (2010); arXiv:1009.2663.ADSCrossRefGoogle Scholar
  8. 8.
    L. Lydersen, J. Skaar, and V. Makarov, J. Mod. Opt. 58, 680 (2011); arXiv:1012.4366.ADSCrossRefGoogle Scholar
  9. 9.
    I. Gerhardt, Qin Liu, A. Lamas-Linares, J. Skaar, Ch. Kurtsiefer, and V. Makarov, Nat. Commun. 2, 349 (2011); arXiv:1011.0105.ADSCrossRefGoogle Scholar
  10. 10.
    S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, Opt. Express 19, 23590 (2011); arXiv:0809.3408.ADSCrossRefGoogle Scholar
  11. 11.
    L. Lydersen, V. Makarov, and J. Skaar, Appl. Phys. Lett. 98, 231104 (2011).CrossRefGoogle Scholar
  12. 12.
    L. Lydersen, M. K. Akhlaghi, A. Hamed Majedi, J. Skaar, and V. Makarov, New J. Phys. 13, 113042 (2011); arXiv:1106.2396.ADSCrossRefGoogle Scholar
  13. 13.
    Qin Liu, A. Lamas-Linares, Ch. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, Rev. Sci. Instrum. 85, 013108 (2014); arXiv:1307.5951.ADSCrossRefGoogle Scholar
  14. 14.
    M. G. Tanner, V. Makarov, and R. H. Hadfield, Opt. Express 22, 6734 (2014); arXiv:1305.5989.ADSCrossRefGoogle Scholar
  15. 15.
    A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, arXiv:1601.00993.Google Scholar
  16. 16.
    C. Ci Wen Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, IEEE J. Sel. Top. Quantum. Electron. 21, 1 (2015); arXiv:1408.6398.CrossRefGoogle Scholar
  17. 17.
    Z. L. Yuan, J. F. Dynes, and A. J. Shields, Nat. Photon. 4, 800 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    Z. L. Yuan, J. F. Dynes, and A. J. Shields, Appl. Phys. Lett. 99, 196101 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    N. Jain, B. Stiller, I. Khan, D. Elser, Ch. Marquardt, and G. Leuchs, Contemp. Phys. 57, 3 (2016); arXiv:1512.07990.Google Scholar
  20. 20.
    R. Renner, PhD Thesis (ETH Zürich, 2005); arXiv: quant-ph/0512258.Google Scholar
  21. 21.
    A. V. Duplinskiy, E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, R. P. Ermakov, A. V. Brodsky, R. R. Unusov, V. L. Kurochkin, A. K. Fedorov, and Y. V. Kurochkin, arXiv:1712.09831.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.Academy of Cryptography of Russian FederationMoscowRussia
  3. 3.Department of Computational Mathematics and Cybernetics, Moscow State UniversityMoscowRussia

Personalised recommendations