Advertisement

Stationary Solutions of the Second-Order Equation for Fermions in Kerr–Newman Space-Time

  • V. P. NeznamovEmail author
  • I. I. Safronov
  • V. Ye. Shemarulin
NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS

Abstract

When using the quantum mechanical second-order equation with the effective potential of the Kerr–Newman (KN) field for fermions, results were obtained that qualitatively differ from the results obtained when using the Dirac equation. In the presence of two event horizons, existence of degenerate stationary bound states was proved for charged and uncharged fermions with square integrable wavefunctions vanishing on event horizons. The fermions in such states are localized near the event horizons with the maxima of probability densities away from the event horizons by fractions of the Compton wavelength of fermions versus the values of coupling constants, the values of angular and orbital momenta j, l, and the value of the azimuthal quantum number mφ. In the case of extreme KN fields, absence of stationary bound states of fermions was shown for any values of coupling constants. Existence of discrete energy spectra was shown for charged and uncharged fermions in the field of KN naked singularity at definite values of physical parameters. The KN naked singularity poses no threat to cosmic censorship because of the regular behavior of the effective potentials of the KN field in quantum mechanics with the second-order equation.

Notes

ACKNOWLEDGMENTS

We express our gratitude to A.L. Novoselova for the essential technical assistance in preparation of the paper.

REFERENCES

  1. 1.
    S. Chandrasekhar, Proc. R. Soc. A 349, 571 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    S. Chandrasekhar, Proc. R. Soc. A 350, 565 (1976).CrossRefGoogle Scholar
  3. 3.
    D. Page, Phys. Rev. D 14, 1509 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    N. Toop, Preprint DAMTP (Cambridge Univ., Cambridge, 1976).Google Scholar
  5. 5.
    R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    E. T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence, J. Math. Phys. 6, 918 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    E. G. Kalnins and W. Miller, J. Math. Phys. 33, 286 (1992).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Belgiorno and M. Martellini, Phys. Lett. B 453, 17 (1999).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun. Pure Appl. Math. 53, 902 (2000).CrossRefGoogle Scholar
  10. 10.
    F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun. Pure Appl. Math. 53, 1201 (2000).CrossRefGoogle Scholar
  11. 11.
    F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Commun. Math. Phys. 230, 201 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    F. Finster, N. Kamran, J. Smoller, and S.-T. Yau, Adv. Theor. Math. Phys. 7, 25 (2003).MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Batic, H. Schmid, and M. Winklmeier, J. Math. Phys. 46, 012504 (2005).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D. Batic and H. Schmid, Progr. Theor. Phys. 116, 517 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    M. Winklmeier and O. Yamada, J. Math. Phys. 47, 102503 (2006).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Batic and H. Schmid, Rev. Colomb. Mat. 42, 183 (2008).Google Scholar
  17. 17.
    M. Winklmeier and O. Yamada, J. Phys. A 42, 295204 (2009).MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Belgiorno and S. L. Cacciatori, J. Math. Phys. 51, 033517 (2010).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C. L. Pekeris, Phys. Rev. A 35, 14 (1987).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    C. L. Pekeris and K. Frankowski, Phys. Rev. A 39, 518 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    M. K.-H. Klissling and A. S. Tahvildar-Zadeh, J. Math. Phys. 56, 042303 (2015).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A. S. Tahvildar-Zadeh, J. Math. Phys. 56, 042501 (2015).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    D. M. Zipoy, J. Math. Phys. 7, 1137 (1966).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    B. Carter, Phys. Rev. 174, 1559 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).CrossRefzbMATHGoogle Scholar
  26. 26.
    Ya. B. Zeldovich and V. S. Popov, Sov. Phys. Usp. 14, 673 (1972).ADSCrossRefGoogle Scholar
  27. 27.
    V. P. Neznamov and I. I. Safronov, J. Exp. Theor. Phys. 126, 647 (2018).Google Scholar
  28. 28.
    V. P. Neznamov, I. I. Safronov, and V. E. Shemarulin, J. Exp. Theor. Phys. 127, 684 (2018).Google Scholar
  29. 29.
    G. T. Horowitz and D. Marolf, Phys. Rev. D 52, 5670 (1995).ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Pruefer, Math. Ann. 95, 499 (1926).MathSciNetCrossRefGoogle Scholar
  31. 31.
    I. Ulehla and M. Havlíček, Appl. Math. 25, 358 (1980).Google Scholar
  32. 32.
    I. Ulehla, M. Havlíček, and J. Hořejší, Phys. Lett. A 82, 64 (1981).ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    I. Ulehla, Rutherford Laboratory Preprint RL-82-095 (Rutherford Laboratory, 1982).Google Scholar
  34. 34.
    R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).ADSCrossRefGoogle Scholar
  35. 35.
    L. Parker, Phys. Rev. D 22, 1922 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 82, 104056 (2010); arXiv:1007.4631 [gr-qc].ADSCrossRefGoogle Scholar
  37. 37.
    M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 83, 105002 (2011); arXiv:1102.4067 [gr-qc].ADSCrossRefGoogle Scholar
  38. 38.
    M. V. Gorbatenko and V. P. Neznamov, J. Mod. Phys. 6, 303 (2015); arXiv:1107.0844 [gr-qc].CrossRefGoogle Scholar
  39. 39.
    V. P. Neznamov and V. E. Shemarulin, Grav. Cosmol. 24, 129 (2018). doi  https://doi.org/10.1134/S0202289318020111 ADSCrossRefGoogle Scholar
  40. 40.
    M. V. Gorbatenko and V. P. Neznamov, Ann. Phys. (Berlin) 526, 491 (2014). doi  https://doi.org/10.1002/andp.201400035 ADSCrossRefGoogle Scholar
  41. 41.
    I. M. Ternov, A. B. Gaina, and G. A. Chizhov, Sov. Phys. J. 23, 695 (1980).CrossRefGoogle Scholar
  42. 42.
    S. Dolan and J. Gair, Class. Quant. Grav. 26, 175020 (2009).ADSCrossRefGoogle Scholar
  43. 43.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Nonrelativistic Theory (Fizmatlit, Moscow, 1963; Pergamon, Oxford, 1965).Google Scholar
  44. 44.
    M. V. Gorbatenko, V. P. Neznamov, and E. Yu. Popov, Grav. Cosmol. 23, 245 (2017); arXiv:1511.05058 [gr-qc]. doi  https://doi.org/10.1134/S0202289317030057
  45. 45.
    V. I. Dokuchaev and Yu. N. Eroshenko, J. Exp. Theor. Phys. 117, 72 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    V. P. Neznamov, Theor. Math. Phys. 197, 1823 (2018).Google Scholar
  47. 47.
    L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).ADSCrossRefGoogle Scholar
  48. 48.
    V. P. Neznamov, Part. Nucl. 37, 86 (2006).CrossRefGoogle Scholar
  49. 49.
    V. P. Neznamov and A. J. Silenko, J. Math. Phys. 50, 122302 (2009).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    J. Dittrich and P. Exner, J. Math. Phys. 26, 2000 (1985).ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    H. Schmid, Math. Nachr. 274–275, 117 (2004); arXiv:math-ph/0207039v2.Google Scholar
  52. 52.
    V. P. Neznamov and I. I. Safronov, Int. J. Mod. Phys. D 25, 1650091 (2016). doi  https://doi.org/10.1142/S0218271816500917 ADSCrossRefGoogle Scholar
  53. 53.
    E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin, Heidelberg, 1991, 1996).Google Scholar
  54. 54.
    R. Penrose, Riv. Nuovo Cim., Ser. I 1 (Num. Spec.), 252 (1969).Google Scholar
  55. 55.
    R. S. Virbhadra, D. Narasimba, and S. M. Chitre, Astron. Astrophys. 337, 1 (1998).ADSGoogle Scholar
  56. 56.
    K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004 (2002).ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    K. S. Virbhadra and C. R. Keeton, Phys. Rev. D 77, 124014 (2008).ADSCrossRefGoogle Scholar
  58. 58.
    D. Dey, K. Bhattacharya, and N. Sarkar, Phys. Rev. D 88, 083532 (2013).ADSCrossRefGoogle Scholar
  59. 59.
    P. S. Joshi, D. Malafaxina, and R. Narayan, Class. Quant. Grav. 31, 015002 (2014).ADSCrossRefGoogle Scholar
  60. 60.
    A. Goel, R. Maity, P. Roy, and T. Sarkar, Phys. Rev. D 91, 104029 (2015); arXiv:1504.01302 [gr-qc].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. P. Neznamov
    • 1
    Email author
  • I. I. Safronov
    • 1
  • V. Ye. Shemarulin
    • 1
  1. 1.Russian Federal Niclear Center-VNIIEFSarovRussia

Personalised recommendations