Advertisement

Journal of Experimental and Theoretical Physics

, Volume 128, Issue 1, pp 158–165 | Cite as

Electron Polarization Solitons in a Helical Molecule

  • A. A. ZabolotskiiEmail author
STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • 8 Downloads

Abstract

The evolution of the spin of an electron moving along the axis of a long helical molecule under the action of an external field is investigated. The field is produced by the dipoles of individual molecules forming a complex molecular structure (e.g., a DNA molecule). The electron polarization dynamics associated with the spin–orbit interaction is described using an integrable generalization of the Manakov equations. The phase cross-modulation, self-modulation, and analogs of the Rashba and Dresselhaus Hamiltonians are taken into account in the model Hamiltonian. The corresponding apparatus based on the solution of the Riemann–Hilbert problem is used for obtaining soliton solutions. The resultant one- and two-soliton solutions demonstrate a number of new properties. It is shown that a local perturbation produces a selective effect on the soliton polarization and can be used for controlling the position of the electron spin using impurity molecules or quantum dots with a constant dipole moment. It is found that the spin–orbit interaction leads to a strong spatial modulation of the soliton shape. The collision of solitons leads to modulation transfer between solitons and a change in the modulation amplitude.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 18-02-00379).

REFERENCES

  1. 1.
    A. S. Davydov, Phys. Scr. 20, 387 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E 65, 061905 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    P. Maniadis, G. Kalosakas, K. O. Rasmussen, and A. R. Bishop, Phys. Rev. E 72, 021912 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    E. Díaz, R. P. A. Lima, and F. Domínguez-Adame, Phys. Rev. B 78, 134303 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, and H. Zacharias, Science (Washington, DC, U. S.) 331, 894 (2011).CrossRefGoogle Scholar
  7. 7.
    Z. Xie, T. Z. Markus, S. R. Cohen, Z. Vager, R. Gutiérrez, and R. Naaman, Nano Lett. 11, 4652 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    D. Mishra, T. Z. Markus, M. Naaman, R. Kettner, B. Gohler, H. Zacharias, N. Friedman, M. Sheves, and C. Fontanesi, Proc. Natl. Acad. Sci. U.S.A. 110, 14872 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    O. B. Dor, S. Yochelis, S. P. Mathew, R. Naaman, and Y. Paltiel, Nat. Commun. 4, 2256 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    M. Kettner, B. Göhler, H. Zacharias, D. Mishra, V. Kiran, R. Naaman, C. Fontanesi, D. H. Waldeck, S. Sék, J. Pawlowski, et al., J. Phys. Chem. C 119, 14542 (2015).CrossRefGoogle Scholar
  11. 11.
    P. C. Mondal, C. Fontanesi, D. H. Waldeck, and R. Naaman, ACS Nano 9, 3377 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Einati, D. Mishra, N. Friedman, M. Sheves, and R. Naaman, Nano Lett. 15, 1052 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    V. Kiran, S. P. Mathew, S. R. Cohen, I. Hernandez Delgado, J. Lacour, and R. Naaman, Adv. Mater. 28, 1957 (2016).CrossRefGoogle Scholar
  14. 14.
    A. C. Aragonés, E. Medina, M. Ferrer-Huerta, N. Gimeno, M. Teixidó, J. L. Palma, N. Tao, J. M. Ugalde, E. Giralt, I. Díez-Pérez, et al., Small 13, 1602519 (2017).CrossRefGoogle Scholar
  15. 15.
    G. Dresselhaus, Phys. Rev. 100, 580 (1955).ADSCrossRefGoogle Scholar
  16. 16.
    Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).ADSGoogle Scholar
  17. 17.
    D. L. Campbell, G. Juzeliunas, and I. B. Spielman, Phys. Rev. A 84, 025602 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    S. Yeganeh, M. A. Ratner, E. Medina, and V. Mujica, J. Chem. Phys. 131, 014707 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    E. Medina, F. López, M. A. Ratner, and V. Mujica, Europhys. Lett. 99, 17006 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    R. Gutiérrez, E. Díaz, R. Naaman, and G. Cuniberti, Phys. Rev. B 85, 081404 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    A.-M. Guo and Q.-F. Sun, Phys. Rev. Lett. 108, 218102 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    A.-M. Guo, E. Díaz, C. Gaul, R. Gutierrez, F. Domínguez-Adame, G. Cuniberti, and Q.-F. Sun, Phys. Rev. B 89, 205434 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    D. Rai and M. Galperin, J. Phys. Chem. C 117, 13730 (2013).CrossRefGoogle Scholar
  24. 24.
    R. Gutiérrez, E. Díaz, C. Gaul, T. Brumme, F. Domínguez-Adame, and G. Cuniberti, J. Phys. Chem. C 117, 22276 (2013).CrossRefGoogle Scholar
  25. 25.
    E. Medina, L. A. Gonzalez-Arraga, D. Finkelstein-Shapiro, B. Berche, and V. Mujica, J. Chem. Phys. 142, 194308 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    S. Behnia, S. Fathizadeh, and A. Akhshani, J. Phys. Chem. C 120, 2973 (2016).CrossRefGoogle Scholar
  27. 27.
    R. A. Caetano, Sci. Rep. 6, 23452 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).ADSGoogle Scholar
  29. 29.
    S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Springer, Berlin, Heidelberg, 1984).zbMATHGoogle Scholar
  30. 30.
    S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).ADSGoogle Scholar
  31. 31.
    R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta, Phys. Rev. E 56, 2213 (1997).ADSCrossRefGoogle Scholar
  32. 32.
    T. Tsuchida, Prog. Theor. Phys. 111, 151 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    A. V. Mikhailov, Phys. D (Amsterdam, Neth.) 3, 73 (1981).Google Scholar
  34. 34.
    V. E. Zakharov and E. I. Schulman, Phys. D (Amsterdam, Neth.) 4, 270 (1982).Google Scholar
  35. 35.
    J. Ieda, T. Miyakawa, and M. Wadati, J. Phys. Soc. Jpn. 73, 2996 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    Deng-Shan Wang, Da-Jun Zhang, and Jianke Yang, J. Math. Phys. 51, 023510 (2010).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    A. A. Zabolotskii, Phys. Rev. E 75, 036612 (2007).ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    A. A. Zabolotskii, Phys. Rev. E 77, 036603 (2008).ADSCrossRefGoogle Scholar
  39. 39.
    A. A. Zabolotskii, Phys. Rev. A 80, 063616 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    E. Díaz, R. Gutiérrez, C. Gaul, G. Cuniberti, and F. Domínguez-Adame, AIMS Mater. Sci. 4, 1052 (2017).Google Scholar
  41. 41.
    D. Sengupta, R. N. Behera, J. C. Smith, and G. M. Ullmann, Structure 13, 849 (2005).CrossRefGoogle Scholar
  42. 42.
    R. Gutiérrez, E. Díaz, R. Naaman, and G. Cuniberti, Phys. Rev. B 85, 081404 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Automation and Electrometry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations