Journal of Experimental and Theoretical Physics

, Volume 127, Issue 4, pp 797–802 | Cite as

Solid–Liquid Phase Transition in the Octadecanoic Acid Film Adsorbed on the Toluene–Water Interface

  • A. M. TikhonovEmail author


The structure of the soluble protonated (pH = 2) octadecanoic acid film adsorbed on the saturated hydrocarbon (n-hexane)–water and aromatic hydrocarbon (toluene)–water interfaces is studied by X-ray reflectometry using synchrotron radiation. The experimental data demonstrate that a solid phase of a Gibbs monolayer 26 ± 1 Å thick, in which aliphatic tails are perpendicular to the surface and the area per molecule is A = 18 ± 2 Å2, is formed in the film at the n-hexane–water interface. The solid monolayer on the toluene–water interface in the adsorbed film melts when temperature increases, and this transition is caused by disordering of the hydrocarbon tails of the acid. During the solid–liquid transition, the Gibbs monolayer thickness remains almost the same, 22 ± 1 Å. In the solid phase, we have A = 20 ± 2 Å2, and the angle of deviation of the molecular tails from the normal to the surface is about 30°. The density of the liquid monolayer phase with A = 24 ± 2 Å2 corresponds to liquid n-octadecane.



The work at NSLS was supported by the United States Department of Energy, project no. #DE-AC02-98CH10886. The work at the X19C station was supported by ChemMatCARS, University of Chicago, University of Illinois at Chicago, and State University of New York at Stony Brook. The theoretical part of the work (Sections 3, 4) was supported by the Russian Science Foundation, project no. 18-12-00108.


  1. 1.
    W. M. Gelbart, A. Ben-Shaul, and D. Roux, Micelles, Membranes, Microemulsions, and Monolayers (Springer, New York, 1994).CrossRefGoogle Scholar
  2. 2.
    M. Lin, J. L. Ferpo, P. Mansaura, and J. F. Baret, J. Chem. Phys. 71, 2202 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Hayami, A. Uemura, M. Ikeda, M. Aratono, and K. Motomura, J. Colloid Interface Sci. 172, 142 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    J. C. Conboy, M. C. Messmer, and G. L. Richmond, J. Phys. Chem. 100, 7617 (1996).CrossRefGoogle Scholar
  5. 5.
    T. Takiue, T. Matsuo, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. B 102, 4906 (1998).CrossRefGoogle Scholar
  6. 6.
    S. Uredat and G. Findenegg, Langmuir 15, 1108 (1999).CrossRefGoogle Scholar
  7. 7.
    D. M. Mitrinovic, Z. Zhang, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 103, 1779 (1999).CrossRefGoogle Scholar
  8. 8.
    Z. Zhang, D. M. Mitrinovic, S. M. Williams, Z. Huang, and M. L. Schlossman, J. Chem. Phys. 110, 7421 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    M. L. Schlossman, M. Li, D. M. Mitrinovic, and A. M. Tikhonov, High Perform. Polym. 12, 551 (2000).CrossRefGoogle Scholar
  10. 10.
    S. V. Pingali, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispers. Sci. Technol. 27, 715 (2006).CrossRefGoogle Scholar
  11. 11.
    M. L. Schlossman and A. M. Tikhonov, Ann. Rev. Phys. Chem. 59, 153 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    A. M. Tikhonov, JETP Lett. 102, 552 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    S. Zarkar, V. Pauchard, U. Farooq, A. Couzis, and S. Banerjee, Langmuir 31, 4878 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Goebel and K. Lunkenheimer, Langmuir 13, 369 (1997).CrossRefGoogle Scholar
  15. 15.
    T. Takiue, A. Yanata, N. Ikeda, K. Motomura, and M. Aratono, J. Phys. Chem. 100, 13743 (1996).CrossRefGoogle Scholar
  16. 16.
    A. M. Tikhonov, D. M. Mitrinovic, M. Li, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 104, 6336 (2000).CrossRefGoogle Scholar
  17. 17.
    A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1976).Google Scholar
  18. 18.
    A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).Google Scholar
  19. 19.
    A. M. Tikhonov, JETP Lett. 104, 309 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    L. Hanley, Y. Choi, E. R. Fuoco, F. A. Akin, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, and M. L. Schlossman, Nucl. Instrum. Methods Phys. Res. B 203, 116 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).CrossRefGoogle Scholar
  23. 23.
    A. M. Tikhonov, J. Chem. Phys 124, 164704 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    J. Koo, S. Park, S. Satija, A. M. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga, J. Colloid Interface Sci. 318, 103 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    F. A. Akin, I. Jang, M. L. Schlossman, S. B. Sinnott, G. Zajac, E. R. Fuoco, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, S. V. Pingali, A. T. Wroble, and L. Hanley, J. Phys. Chem. B 108, 9656 (2004).CrossRefGoogle Scholar
  27. 27.
    F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).ADSCrossRefGoogle Scholar
  28. 28.
    E. S. Wu and W. W. Webb, Phys. Rev. A 8, 2065 (1973).ADSCrossRefGoogle Scholar
  29. 29.
    J. D. Weeks, J. Chem. Phys. 67, 3106 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen, and J. Bohr, Phys. Rev. Lett. 54, 114 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    D. K. Schwartz, M. L. Schlossman, E. H. Kawamoto, G. J. Kellogg, P. S. Pershan, and B. M. Ocko, Phys. Rev. A 41, 5687 (1990).ADSCrossRefGoogle Scholar
  33. 33.
    J. Daillant, L. Bosio, B. Harzallah, and J. J. Benattar, J. Phys. II 1, 149 (1991).Google Scholar
  34. 34.
    L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).CrossRefGoogle Scholar
  35. 35.
    S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).ADSCrossRefGoogle Scholar
  36. 36.
    D. M. Small, The Physical Chemistry of Lipids (Plenum, New York, 1986).CrossRefGoogle Scholar
  37. 37.
    K. Motomura, N. Matubayasi, M. Aratono, and R. Matuura, J. Colloid Interface Sci. 64, 356 (1978).ADSCrossRefGoogle Scholar
  38. 38.
    M. Aratono, T. Takiue, N. Ikeda, A. Nakamura, and K. Motomura, J. Phys. Chem. 97, 5141 (1993).CrossRefGoogle Scholar
  39. 39.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  40. 40.
    V. I. Marchenko, Sov. Phys. JETP 54, 605 (1981).Google Scholar
  41. 41.
    V. I. Marchenko, JETP Lett. 33, 381 (1981).ADSGoogle Scholar
  42. 42.
    D. P. Cistola, D. M. Small, and J. A. Hamilton, J. Lipid Res. 23, 795 (1982).Google Scholar
  43. 43.
    A. Pockels, Nature (London, U.K.) 43, 437 (1891).Google Scholar
  44. 44.
    I. Langmuir, J. Am. Chem. Soc. 39, 354 (1917).CrossRefGoogle Scholar
  45. 45.
    I. R. Peterson, G. Brezesinski, B. Struth, and E. Scalas, J. Phys. Chem. B 102, 9437 (1998).CrossRefGoogle Scholar
  46. 46.
    D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).ADSCrossRefGoogle Scholar
  47. 47.
    A. Müller, Proc. R. Soc., Ser. A 138, 514 (1932).Google Scholar
  48. 48.
    E. B. Sirota, Langmuir 13, 3849 (1997).CrossRefGoogle Scholar
  49. 49.
    E. N. Kotel’nikova and S. K. Filatov, Crystal Chemistry of Paraphines (Zh. Neva, St. Petersburg, 2002) [in Russian].Google Scholar
  50. 50.
    A. M. Tikhonov, H. Patel, S. Garde, and M. L. Schlossman, J. Phys. Chem. B 110, 19093 (2006).CrossRefGoogle Scholar
  51. 51.
    M. Li, A. M. Tikhonov, and M. L. Schlossman, J. Europhys. Lett. 58, 80 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    A. M. Tikhonov, S. V. Pingali, and M. L. Schlossman, J. Chem. Phys. 120, 11822 (2004).ADSCrossRefGoogle Scholar
  53. 53.
    T. Takiue, T. Tottori, K. Tatsuta, H. Matsubara, H. Tanida, K. Nitta, T. Uruga, and M. Aratono, J. Phys. Chem. B 116, 13739 (2012).CrossRefGoogle Scholar
  54. 54.
    Q. Lei and C. D. Bain, Phys. Rev. Lett. 92, 176103 (2004).ADSCrossRefGoogle Scholar
  55. 55.
    L. Tamam, D. Pontoni, Z. Sapir, Sh. Yefet, E. Sloutskin, B. M. Ocko, H. Reichert, and M. Deutsch, Proc. Natl. Acad. Sci. 108, 5522 (2011).ADSCrossRefGoogle Scholar
  56. 56.
    Yu. Tokiwa, H. Sakamoto, T. Takiue, M. Aratono, and H. Matsubara, J. Phys. Chem. B 119, 6235 (2015).CrossRefGoogle Scholar
  57. 57.
    A. M. Tikhonov, JETP Lett. 108, 71 (2018).Google Scholar
  58. 58.
    R. Z. Safieva, Petroleum Physical Chemistry: Physicochemical Principles of Oil Processing Technology (Khimiya, Moscow, 1998) [in Russian].Google Scholar
  59. 59.
    K. Akbarzadeh, A. Hammami, A. Kharrat, D. Zhan, S. Allenson, J. Creek, S. Kabir, A. J. Jamaluddin, A. G. Marshall, R. P. Rodgers, O. C. Mullins, and T. Solbakken, Oilfield Rev. 19 (2), 22 (2007).Google Scholar
  60. 60.
    O. C. Mullins, Ann. Rev. Anal. Chem. 4, 393 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations