Superaging and Subaging Phenomena in a Nonequilibrium Critical Behavior of the Structurally Disordered Two-Dimensional XY Model

Order, Disorder, and Phase Transition in Condensed System
  • 4 Downloads

Abstract

A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation–dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation–dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin–spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin–spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982; Pergamon, Oxford, 1979).Google Scholar
  2. 2.
    V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Description of Non-Equilibrium Critical Behaviour in Disordered Systems by Theoretical Methods (Fizmatlit, Moscow, 2013) [in Russian].MATHGoogle Scholar
  3. 3.
    V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970).ADSMathSciNetGoogle Scholar
  4. 4.
    V. L. Berezinskii, Low Temperature Properties of Two-Dimensional Systems (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  5. 5.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    L. Berthier, P. C. W. Holdsworth, and M. Sellitto, J. Phys. A 34, 1805 (2001).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. V. Prudnikov, V. V. Prudnikov, and I. S. Popov, JETP Lett. 101, 539 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    S. E. Korshunov, Phys. Usp. 49, 225 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    I. S. Popov, P. V. Prudnikov, and V. V. Prudnikov, J. Phys.: Conf. Ser. 681, 012015 (2016).Google Scholar
  10. 10.
    L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).CrossRefGoogle Scholar
  11. 11.
    P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60, 762 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    L. F. Cugliandolo and J. Kurchan, J. Phys. A 27, 5749 (1994).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    L. F. Cugliandolo, J. Kurchan, and G. Parisi, J. Phys. I (Paris) 14, 1641 (1994).Google Scholar
  16. 16.
    P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, et al., Progr. Theor. Exp. Phys. 2015, 053A01 (2015).CrossRefGoogle Scholar
  17. 17.
    V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Stat. Mech.: Theory Exp. 2016, 043303 (2016).CrossRefGoogle Scholar
  18. 18.
    A. R. Pereira, L. A. S. Mol, S. A. Leonel, P. Z. Coura, and B. V. Costa, Phys. Rev. B 68, 132409 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    B. Berche, A. I. Farinas-Sanchez, Yu. Holovatch, and R. V. Paredes, Eur. Phys. J. B 36, 91 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    S. Abriet and D. Karevski, Eur. Phys. J. B 37, 47 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    M. Henkel and M. Pleimling, in Non-Equilibrium Phase Transitions (Springer, Heidelberg, 2010), Vol. 2, p. 544.ADSGoogle Scholar
  22. 22.
    C. Godreche and J. M. Luck, J. Phys. A 33, 9141 (2000).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    C. Godreche and J. M. Luck, J. Phys.: Condens. Matter 14, 1589 (2002).ADSGoogle Scholar
  24. 24.
    V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Exp. Theor. Phys. 118, 401 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and A. N. Vakilov, Phys. Lett. A 379, 774 (2015).CrossRefGoogle Scholar
  26. 26.
    P. Calabrese and A. Gambassi, Phys. Rev. E 66, 066101 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    P. Calabrese and A. Gambassi, Phys. Rev. B 66, 212407 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    P. Calabrese, A. Gambassi, and F. Krzakala, J. Stat. Mech.: Theory Exp. 2006, P06016 (2006).CrossRefGoogle Scholar
  29. 29.
    A. J. Bray, Adv. Phys. 43, 357 (1994).ADSCrossRefGoogle Scholar
  30. 30.
    A. J. Bray, A. J. Briant, and D. K. Jervis, Phys. Rev. Lett. 84, 1503 (2000).ADSCrossRefGoogle Scholar
  31. 31.
    A. Asad and B. Zheng, J. Phys. A 40, 9957 (2007).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    X. W. Lei and B. Zheng, Phys. Rev. E 75, 040104(R) (2007).ADSCrossRefGoogle Scholar
  33. 33.
    V. V. Prudnikov, P. V. Prudnikov, E. A. Pospelov, and P. N. Malyarenko, JETP Lett. 102, 167 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    H. Weber and P. Minnhagen, Phys. Rev. B 37, 5986 (1988).ADSCrossRefGoogle Scholar
  35. 35.
    P. V. Prudnikov and I. S. Popov, J. Phys.: Conf. Ser. 510, 012014 (2014).Google Scholar
  36. 36.
    V. V. Prudnikov, P. V. Prudnikov, S. V. Alekseev, and I. S. Popov, The Physics of Metals and Metallography 115, 1186 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    C. Chatelain, J. Stat. Mech.: Theory Exp. 2004, P06006 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Prudnikov
    • 1
  • P. V. Prudnikov
    • 1
  • I. S. Popov
    • 1
  1. 1.Omsk State UniversityOmskRussia

Personalised recommendations