Journal of Experimental and Theoretical Physics

, Volume 126, Issue 2, pp 147–158 | Cite as

Dynamics of a Dipolariton Optical Parametric Oscillator in a Semiconductor Microcavity

  • P. I. Khadzhi
  • O. F. Vasilieva
  • I. V. Belousov
Atoms, Molecules, Optics
  • 9 Downloads

Abstract

The dynamics of dipolariton states in a planar microcavity has been studied upon pumping of a state corresponding to the middle dipolariton branch. It has been shown that, under exact resonance conditions, both periodic and aperiodic regimes of conversion of pump dipolaritons to dipolaritons of idler and signal modes occur. The periodic regime of conversion of signal and idler dipolaritons without involving pump dipolaritons on the middle branch has also been analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Kavokin and G. Malpuech, Thin Films, Nanostructures: Cavity Polaritons, Ed. by V. M. Agranovich and D. Taylor (Elsevier, Amsterdam, 2003).Google Scholar
  2. 2.
    H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    A. Kavokin, Appl. Phys. A 89, 241 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    M. M. Glazov and K. V. Kavokin, Phys. Rev. B 73, 245317 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    I. A. Shelykh, R. Johne, D. D. Solnyshkov, A. V. Kavokin, N. A. Gippius, and G. Malpuech, Phys. Rev. B 76, 155308 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    D. M. Whittaker, Phys. Rev. B 63, 193305 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    C. Ciuti, P. Schwendimann, B. Deveaud, and A. Quattropani, Phys. Rev. B 62, R4825 (2000).Google Scholar
  8. 8.
    P. G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts, Phys. Rev. Lett. 84, 1547 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    J. J. Baumberg, P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnisk, D. M. Whittaker, and J. S. Roberts, Phys. Rev. B 62, R16247 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    C. Ciuti, Phys. Rev. B 69, 245304 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    P. Schwendimann, C. Ciuti, and A. Quattropani, Phys. Rev. B 68, 165324 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    P. G. Savvidis, J. J. Baumberg, D. Porras, D. M. Whittaker, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 65, 073309 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Shelykh, A. V. Kavokin, and G. Malpuech, Phys. Status Solidi B 242, 2271 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J. Baumberg, and J. S. Roberts, Phys. Rev. Lett. 85, 3680 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    A. I. Tartakovskii, D. N. Krizhanovskii, G. Malpuech, M. Emam–Ismail, A. V. Chernenko, A. V. Kavokin, V. D. Kulakovskii, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 67, 165302 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    A. I. Tartakovskii, D. N. Krizhanovskii, and V. D. Kulakovskii, Phys. Rev. B 62, R13298 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    C. Ciuti, P. Schwendimann, and A. Quattropani, Phys. Rev. B 63, 041303(R) (2001).ADSCrossRefGoogle Scholar
  18. 18.
    C. Ciuti, P. Schwendimann, and A. Quattropani, Semicond. Sci. Technol. 18, S279 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    P. G. Savvidis, C. Ciuti, J. J. Baumberg, D. M. Whittaker, M. S. Skolnick, and J. M. Roberts, Phys. Rev. B 64, 075311 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    P. I. Khadzhi and O. F. Vasil’eva, Opt. Spectrosc. 111, 814 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    P. I. Khadzhi and O. F. Vasil’eva, Phys. Solid State 53, 1238 (2011).CrossRefGoogle Scholar
  22. 22.
    O. F. Vasil’eva and P. I. Khadzhi, Opt. Spectrosc. 115, 823 (2013).ADSCrossRefGoogle Scholar
  23. 23.
    P. I. Khadzhi and O. F. Vasilieva, J. Nanophoton. 6, 061805 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    P. I. Khadzhi and O. F. Vasilieva, J. Nanoelectron. Optoelectron. 9, 1 (2014).CrossRefGoogle Scholar
  25. 25.
    P. Cristofolini, G. Christmann, S. I. Tsintzos, G. Deligeorgis, G. Konstantinidis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Science 336, 704 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    G. Christmann, A. Askitopoulos, G. Deligeorgis, Z. Hatzopoulos, S. I. Tsintzos, P. G. Savvidis, and J. J. Baumberg, Appl. Phys. Lett. 98, 081111 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    O. Kyriienko and T. C. H. Liew, Phys. Rev. B 93, 035301 (2016).ADSCrossRefGoogle Scholar
  28. 28.
    K. Sivalertporn and E. A. Muljarov, Phys. Rev. Lett. 115, 077401 (2015); arXiv:1305.5883.ADSCrossRefGoogle Scholar
  29. 29.
    J. S. Rojas-Arias, B. A. Rodriguez, and H. Vinck-Posada, arXiv:1603.06154.Google Scholar
  30. 30.
    C. Coulson, G. Christmann, P. Cristofolini, C. Grossman, J. J. Baumberg, S. I. Tsintzos, G. Konstantinidis, Z. Hatzopoulos, and P. G. Savvidis, Phys. Rev. B 87, 045311 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    A. V. Nalitov, D. D. Solnyshkov, N. A. Gippius, and G. Malpuech, arXiv:1410.2812.Google Scholar
  32. 32.
    O. Kyriienko, A. V. Kavokin, and I. A. Shelykh, arXiv:1211.0688; Phys. Rev. Lett. 111, 176401 (2013).ADSGoogle Scholar
  33. 33.
    K. Kristinsson, O. Kyriienko, T. C. H. Liew, and I. A. Shelykh, arXiv:1304.1316; Phys. Rev. B 88, 245303 (2013).ADSGoogle Scholar
  34. 34.
    K. Kristinsson, O. Kyriienko, and I. A. Shelykh, arXiv:1310.7414; Phys. Rev. A 89, 023836 (2014).ADSGoogle Scholar
  35. 35.
    O. Kyriienko, I. A. Shelykh, and T. C. H. Liew, arXiv:1403.7441; Phys. Rev. A 90, 033807 (2014).ADSGoogle Scholar
  36. 36.
    I. A. Shelykh, O. Kyriienko, K. Kristinsson, and T. C. H. Liew, in Proc. of the International Conference on Nanomaterials: Applications and Properties, 2014, Vol. 3, p. 02NAESF03.Google Scholar
  37. 37.
    J.-Y. Li, S.-Q. Duan, and W. Zhang, Europhys. Lett. 108, 67010 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    I. Rosenberg, Y. Harpaz, K. West, L. Pfeiffer, and R. Rapaport, arXiv:1604.05952; Phys. Rev. B 93, 195151 (2016).ADSGoogle Scholar
  39. 39.
    P. I. Khadzhi, O. F. Vasilieva, and I. V. Belousov, Opt. Spectrosc. 120, 760 (2016).ADSCrossRefGoogle Scholar
  40. 40.
    P. I. Khadzhi and O. F. Vasilieva, JETP Lett. 102, 581 (2015).ADSCrossRefGoogle Scholar
  41. 41.
    J. Wilkes and E. A. Muljarov, arXiv:1606.06479; Phys. Rev. B 94, 125310 (2016).ADSGoogle Scholar
  42. 42.
    N. Bobrovska, M. Matuszewski, T. C. H. Liew, and O. Kyriienko, arXiv:1611.03238.Google Scholar
  43. 43.
    A. I. Burshtein and A. Yu. Pusep, Sov. Phys. JETP 42, 978 (1975).ADSGoogle Scholar
  44. 44.
    P. I. Khadzhi, Nonlinear Optical Processes in a System of Exitons and Biexitons on Semiconductors (Shtiintsa, Kishinev, 1985) [in Russian].Google Scholar
  45. 45.
    T. Byrnes, G. V. Kolmakov, R. Y. Kezerashvili, and Y. Yamamoto, arXiv:1404.5353; Phys. Rev. B 90, 125314 (2014).ADSGoogle Scholar
  46. 46.
    I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatlit, Moscow, 1963; Academic, New York, 1980).Google Scholar
  47. 47.
    G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (Nauka, Moscow, 1971; McGraw-Hill, New York, 1961).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • P. I. Khadzhi
    • 1
  • O. F. Vasilieva
    • 2
  • I. V. Belousov
    • 1
  1. 1.Institute of Applied PhysicsChisinauMoldova
  2. 2.Taras Shevchenko Transnistria State UniversityTiraspolMoldova

Personalised recommendations