Coulomb Logarithm in Nonideal and Degenerate Plasmas
- 13 Downloads
Abstract
Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein–Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.
Preview
Unable to display preview. Download preview PDF.
References
- 1.L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 203 (1937).Google Scholar
- 2.L. Spitzer, Mon. Not. R. Astron. Soc. 100, 396 (1940).ADSCrossRefGoogle Scholar
- 3.R. S. Cohen, L. Spitzer, Jr., and P. McR. Routly, Phys. Rev. 80, 230 (1950).ADSCrossRefGoogle Scholar
- 4.L. Spitzer, Jr. and R. Härm, Phys. Rev. 89, 977 (1953).ADSCrossRefGoogle Scholar
- 5.L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience, London, 1956).MATHGoogle Scholar
- 6.S. V. Temko, Sov. Phys. JETP 4, 898 (1956).MathSciNetGoogle Scholar
- 7.O. V. Konstantinov and V. I. Perel’, Sov. Phys. JETP 14, 944 (1961).Google Scholar
- 8.S. Skupsky, Phys. Rev. A 16, 727 (1977).ADSCrossRefGoogle Scholar
- 9.Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).ADSCrossRefGoogle Scholar
- 10.C.-K. Li and R. D. Petrasso, Phys. Rev. Lett. 70, 3063 (1993).ADSCrossRefGoogle Scholar
- 11.C. A. Ordonez and M. I. Molina, Phys. Plasmas 1, 2515 (1994).ADSCrossRefGoogle Scholar
- 12.E. Bésuelle, R. R. E. Salomaa, and D. Teychenné, Phys. Rev. E 60, 2260 (1999).ADSCrossRefGoogle Scholar
- 13.T. S. Ramazanov and S. K. Kodanova, Phys. Plasmas 8, 5049 (2001).ADSCrossRefGoogle Scholar
- 14.J. R. Correa, Y. Chang, and C. A. Ordonez, Phys. Plasmas 12, 084505 (2005).ADSCrossRefGoogle Scholar
- 15.D. O. Gericke, M. S. Murillo, and M. Schlanges, Phys. Rev. E 65, 036418 (2002).ADSCrossRefGoogle Scholar
- 16.L. S. Brown and R. L. Singleton, Jr., Phys. Rev. E 76, 066404 (2007).ADSCrossRefGoogle Scholar
- 17.L. G. Stanton and M. S. Murillo, Phys. Rev. E 93, 043203 (2016).ADSCrossRefGoogle Scholar
- 18.A. N. Starostin, V. K. Gryaznov, and A. V. Filippov, JETP Lett. 104, 696 (2016).ADSCrossRefGoogle Scholar
- 19.V. E. Fortov, Phys. Usp. 50, 333 (2007).ADSCrossRefGoogle Scholar
- 20.J. M. Ziman, Philos. Mag. 6, 1013 (1961).ADSCrossRefGoogle Scholar
- 21.J. M. Ziman, Proc. Phys. Soc. 86, 337 (1965).ADSMathSciNetCrossRefGoogle Scholar
- 22.J. M. Ziman, Adv. Phys. 13, 89 (1964).ADSCrossRefGoogle Scholar
- 23.C. C. Bradley, T. E. Faber, E. G. Wilson, and J. M. Ziman, Philos. Mag. 7, 865 (1962).ADSCrossRefGoogle Scholar
- 24.J. M. Ziman, Adv. Phys. 16, 551 (1967).ADSCrossRefGoogle Scholar
- 25.E. M. Livshits and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 10: Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
- 26.R. B. Dingle, Philos. Mag. J. Sci. 46, 831 (1955).CrossRefGoogle Scholar
- 27.M. Goano, ACM Trans. Math. Software 21, 221 (1995).CrossRefGoogle Scholar
- 28.V. K. Gryaznov, Yu. V. Ivanov, A. N. Starostin, and V. E. Fortov, Teplofiz. Vys. Temp. 14, 643 (1976).Google Scholar
- 29.R. Barrie, Proc. Phys. Soc. B 69, 553 (1956).ADSCrossRefGoogle Scholar
- 30.L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980).Google Scholar
- 31.I. Z. Fisher, Sov. Phys. Usp. 5, 239 (1962).ADSCrossRefGoogle Scholar
- 32.N. P. Kovalenko and I. Z. Fisher, Sov. Phys. Usp. 15, 592 (1972).ADSCrossRefGoogle Scholar
- 33.G. N. Sarkisov, Phys. Usp. 42, 545 (1999).ADSCrossRefGoogle Scholar
- 34.T. Morita and K. Hiroike, Progr. Theor. Phys. 23, 1003 (1960).ADSCrossRefGoogle Scholar
- 35.Yu. V. Arkhipov, A. Askaruly, A. E. Davletov, D. Yu. Dubovtsev, Z. Donkó, P. Hartmann, I. Korolov, L. Conde, and I. M. Tkachenko, Phys. Rev. Lett. 119, 045001 (2017).ADSCrossRefGoogle Scholar
- 36.A. V. Filippov, A. N. Starostin, I. M. Tkachenko, and V. E. Fortov, Phys. Lett. A 376, 31 (2011).ADSCrossRefGoogle Scholar
- 37.A. V. Filippov, A. N. Starostin, I. M. Tkachenko, and V. E. Fortov, Contrib. Plasma Phys. 53, 442 (2013).ADSCrossRefGoogle Scholar
- 38.K.-C. Ng, J. Chem. Phys. 61, 2680 (1974).ADSCrossRefGoogle Scholar
- 39.S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).ADSCrossRefGoogle Scholar
- 40.V. E. Fortov, V. Ya. Ternovoi, S. V. Kvitov, V. B. Mintsev, D. N. Nikolaev, A. A. Pyalling, and A. S. Filimonov, JETP Lett. 69, 926 (1999).ADSCrossRefGoogle Scholar
- 41.V. Ya. Ternovoi, A. S. Filimonov, V. E. Fortov, S. V. Kvitov, D. N. Nikolaev, and A. A. Pyalling, Phys. B: Condens. Matter 265, 6 (1999).ADSCrossRefGoogle Scholar
- 42.W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3334 (1999).ADSCrossRefGoogle Scholar
- 43.R. Chau, A. C. Mitchell, R. W. Minich, and W. J. Nellis, Phys. Rev. Lett. 90, 245501 (2003).ADSCrossRefGoogle Scholar