Advertisement

Crystallography Reports

, Volume 64, Issue 3, pp 386–391 | Cite as

Group-Theoretical Classification of Aristotypes of Cation and Anion Orders in Perovskites

  • M. V. TalanovEmail author
  • V. M. Talanov
  • V. B. Shirokov
THEORY OF CRYSTAL STRUCTURES

Abstract

A group-theoretical classification of cation and anion orders of crystals with a perovskite structure is presented. Aristotypes are idealized structures (phases), from which the low-symmetry ordered modifications of perovskites are formed as a result of rotations and deformation of octahedra, as well as the cooperative Jahn–Teller effect and other physical phenomena. Seven aristotype classes have been distinguished, which are characterized by the atomic ordering in each of Wyckoff positions and simultaneous atomic ordering in several positions. The critical and secondary (improper) order parameters, describing the formation of ordered structures, are determined. The classification proposed makes it possible to systematize a variety of known phases, establish genetic structural links between low-symmetry ordered structures, and design new materials.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 16-32-60025 mol_a_dk.

REFERENCES

  1. 1.
    K. S. Aleksandrov and B. V. Beznosikov, Perovskites: Present and Future. Variety of Parent Phases, Phase Transitions, Possibilities of Synthesis of New Compounds (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].Google Scholar
  2. 2.
    K. M. Rabe, Ch. H. Ahn, and J.-M. Triscone, Physics of Ferroelectrics: A Modern Perspective (Springer Science and Business Media, 2007.Google Scholar
  3. 3.
    K. S. Aleksandrov and B. V. Beznosikov, Perovskite-Type Crystals (Nauka. Sibirskoe Predpriyatie RAN, Novosibirsk, 1997) [in Russian].Google Scholar
  4. 4.
    R. H. Mitchel, Perovskites: Modern and Ancient (Almaz Press, Ontario, 2002).Google Scholar
  5. 5.
    E. G. Fesenko, Perovskite Family and Ferroelectricity (Atomizdat, Moscow, 1972) [in Russian].Google Scholar
  6. 6.
    G. King and P. M. Woodward, J. Mater. Chem. 20, 5785 (2010).CrossRefGoogle Scholar
  7. 7.
    P. K. Davies, Current Opinion Solid State Mater. Sci. 4, 467 (1999).CrossRefGoogle Scholar
  8. 8.
    A. Ourmazd and J. C. H. Spence, Nature (London) 329, 425 (1987).CrossRefGoogle Scholar
  9. 9.
    K. S. Aleksandrov and S. V. Misyul’, Kristallografiya 26 (5), 1074 1981).Google Scholar
  10. 10.
    C. J. Howard, B. J. Kennedy, and P. M. Woodward, Acta Crystallogr. B 59, 463 (2003).CrossRefGoogle Scholar
  11. 11.
    C. J. Howard and H. T. Stokes, Acta Crystallogr. B 60, 674 (2004).CrossRefGoogle Scholar
  12. 12.
    C. J. Howard and M. A. Carpenter, Acta Crystallogr. B 66, 40 (2010).CrossRefGoogle Scholar
  13. 13.
    H. D. Megaw, Ferroelectricity in Crystals (Methuen, London, 1957).Google Scholar
  14. 14.
    H. D. Megaw, Crystal Structures: A Working Approach (W.B. Saunders, Philadelphia, 1973).Google Scholar
  15. 15.
    K. S. Aleksandrov, A. T. Anistratov, B. V. Beznosikov, and N. V. Fedoseeva, Phase Transitions in Crystals of ABX3 Haloid Compounds (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  16. 16.
    V. M. Talanov, M. V. Talanov, and V. B. Shirokov, Crystallogr. Rep. 59 (5), 650 (2014).CrossRefGoogle Scholar
  17. 17.
    M. V. Talanov, V. B. Shirokov, and V. M. Talanov, Crystallogr. Rep. 59 (5), 662 (2014).CrossRefGoogle Scholar
  18. 18.
    M. V. Talanov, V. B. Shirokov, and V. M. Talanov, Acta Crystallogr. A 72, 222 (2016).CrossRefGoogle Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).Google Scholar
  20. 20.
    E. B. Vinberg, Yu. M. Gufan, V. P. Sakhnenko, and Yu. I. Sirotin, Kristallografiya 19 (1), 21 (1974).Google Scholar
  21. 21.
    J. Dimmock, Phys. Rev. 130, 1337 (1963).CrossRefGoogle Scholar
  22. 22.
    Yu. A. Izyumov, V. E. Naish, and V. N. Syromyatnikov, Kristallografiya 24 (6), 1115 (1979).Google Scholar
  23. 23.
    Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, Moscow, 1975).Google Scholar
  24. 24.
    G. M. Chechin, T. I. Ivanova, and V. P. Sakhnenko, Phys. Status Solidi B 152, 431 (1989).CrossRefGoogle Scholar
  25. 25.
    V. P. Sakhnenko, V. M. Talanov, and G. M. Chechin, Fiz. Met. Metalloved. 62 (5), 847 (1986).Google Scholar
  26. 26.
    Yu. M. Gufan, Structural Phase Transitions (Nauka, Moscow, 1982) [in Russian].Google Scholar
  27. 27.
    K. S. Aleksandrov and S. V. Misyul’, Kristallografiya 26 (5), 1074 (1981).Google Scholar
  28. 28.
    M. V. Talanov, Cryst. Growth Des. 18, 3433 (2018).CrossRefGoogle Scholar
  29. 29.
    A. P. Levanyuk and D. G. Sannikov, Usp. Fiz. Nauk 112 (4), 561 (1974).CrossRefGoogle Scholar
  30. 30.
    O. V. Kovalev, Irreducible Representations of Space Groups (Izd-vo AN USSR, Kiev, 1961) [in Russian].Google Scholar
  31. 31.
    H. T. Stokes, D. M. Hatch, and B. J. Campbell, ISOTROPY Software Suite (2007); iso.byu.edu.Google Scholar
  32. 32.
    C. J. Howard and H. T. Stokes, Acta Crystallogr. A 61, 93 (2005).CrossRefGoogle Scholar
  33. 33.
    V. B. Shirokov and V. I. Torgashev, Crystallogr. Rep. 49 (1), 20 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. V. Talanov
    • 1
    Email author
  • V. M. Talanov
    • 2
  • V. B. Shirokov
    • 1
    • 3
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Platov South-Russian State Polytechnic UniversityNovocherkasskRussia
  3. 3.South Scientific Center, Russian Academy of SciencesRostov-on-DonRussia

Personalised recommendations