Advertisement

Crystallography Reports

, Volume 64, Issue 3, pp 407–412 | Cite as

Computer Simulation of Zr0.8Sc0.2O1.9/Ce0.9Gd0.1O1.95 Heterostructure

  • A. K. Ivanov-SchitzEmail author
  • I. Yu. Gotlib
  • M. Z. Galin
  • G. N. Mazo
  • I. V. Murin
PHYSICAL PROPERTIES OF CRYSTALS

Abstract

A two-layer Zr0.8Sc0.2O1.9/Ce0.9Gd0.1O1.95 heterostructure has been modeled by the molecular dynamics method in a box containing about 27 thousand atoms. It is shown that this system retains on the whole the crystallographic characteristics of layers doped with zirconia and ceria, having a fluorite structure. Crystal structure distortions are observed in a narrow boundary layer with a thickness of few angstrom. An analysis of pair correlation functions indicates that the oxygen sublattice in the heterostructure is disordered. The calculated values of the layer-by-layer diffusion coefficient of oxygen and the diffusion activation energy are compared with the data of both direct physical and computer experiments.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 17-03-00650.

REFERENCES

  1. 1.
    J. P. P. Huijmans, F. P. F. van Berkel, and G. M. Christie, J. Power Sources 71, 107 (1998).CrossRefGoogle Scholar
  2. 2.
    B. C. H. Steele and A. Heinzel, Nature 414, 345 (2001).CrossRefGoogle Scholar
  3. 3.
    T. Takeguchi, R. Kikuchi, T. Yano, et al., Catal. Today. 84, 217 (2003).CrossRefGoogle Scholar
  4. 4.
    S. M. Haile, Acta Mater. 51, 5981 (2003).CrossRefGoogle Scholar
  5. 5.
    J. Rossmeisl and W. G. Bessler, Solid State Ionics 178, 1694 (2008).CrossRefGoogle Scholar
  6. 6.
    A. Tarancon, M. Burriel, J. Santiso, et al., J. Mater. Chem. 20, 3799 (2010).CrossRefGoogle Scholar
  7. 7.
    W. C. Chueh, Y. Hao, W. Jung, et al., Nat. Mater. 11, 155 (2012).CrossRefGoogle Scholar
  8. 8.
    O. A. Marina, C. Bagger, S. Primdahl, et al., Solid State Ionics 123, 199 (1999).CrossRefGoogle Scholar
  9. 9.
    S. Wang, T. Kobayshi, M. Dokiya, et al., J. Electrochem. Soc. 147, 3606 (2000).CrossRefGoogle Scholar
  10. 10.
    J. Faber, C. Geoffroy, A. Roux, et al., Appl. Phys. A 49, 225 (1989).CrossRefGoogle Scholar
  11. 11.
    S. P. Jiang and J. Li, Solid Oxide Fuel Cells. Materials Properties and Performance, Ed. by J. W. Fergus (CRC Press, Boca Raton, 2009), p. 131.Google Scholar
  12. 12.
    A. Mai, V. A. C. Haanappel, S. Uhlenbruck, et al., Solid State Ionics 176, 1341 (2005).CrossRefGoogle Scholar
  13. 13.
    S. Sun, R. Hui, and J. Roller, J. Solid State Electrochem. 14, 1125 (2010).CrossRefGoogle Scholar
  14. 14.
    T. Matsui, S. Li, H. Muroyama, et al., Solid State Ionics 300, 135 (2017).CrossRefGoogle Scholar
  15. 15.
    D. Lee, I. Lee, Y. Jeon, et al., Solid State Ionics 176, 1021 (2005).CrossRefGoogle Scholar
  16. 16.
    P. Plonczak, M. Joost, J. Hjelm, et al., J. Power Sources 196, 1156 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Uhlenbruck, N. Jordan, D. Sebold, et al., Thin Solid Films 515, 4053 (2007).CrossRefGoogle Scholar
  18. 18.
    M. Shiono, K. Kobayashi, T. L. Nguyen, et al., Solid State Ionics 170, 1 (2004).CrossRefGoogle Scholar
  19. 19.
    T. Somekawa, Y. Matsuzaki, Y. Tachikawa, et al., Solid State Ionics 282, 1 (2015).CrossRefGoogle Scholar
  20. 20.
    F. Wang, M. E. Brito, K. Yamaji, et al., Solid State Ionics 262, 454 (2014).CrossRefGoogle Scholar
  21. 21.
    I. Yu. Gotlib, A. K. Ivanov-Shitz, and I. V. Murin, Proc. All-Russia Conf. with Int. Participation “Chemistry of Solids and Functional Materials-2018,” May 21–27, 2018, St. Petersburg. Google Scholar
  22. 22.
    A. K. Ivanov-Shitz and G. N. Mazo, Crystallogr. Rep. 63 (1), 1 (2018).CrossRefGoogle Scholar
  23. 23.
    M. Z. Galin, A. K. Ivanov-Shitz, and G. N. Mazo, Crystallogr. Rep. 63 (1), 104 (2018).CrossRefGoogle Scholar
  24. 24.
    M. Yashima and T. Takizawa, J. Phys. Chem. C 114, 2385 (2010).CrossRefGoogle Scholar
  25. 25.
    T. I. Politova and J. T. S. Irvine, Solid State Ionics 168, 153 (2004).CrossRefGoogle Scholar
  26. 26.
    S. P. S. Badwal, F. T. Ciacchi, and D. Milosevic, Solid State Ionics 136–137, 91 (2000).CrossRefGoogle Scholar
  27. 27.
    W. Smith, I. T. Todorov, and M. Leslie, Z. Kristallogr. 220, 563 (2005).Google Scholar
  28. 28.
    Computer Modelling in Inorganic Chemistry, Ed. by C. R. A. Catlow (Academic, London, 1997).Google Scholar
  29. 29.
    S. L. Chaplot, Phys. Rev. B 42, 2149 (1990).CrossRefGoogle Scholar
  30. 30.
    S. P. Miller, B. I. Dunlap, and A. S. Fleischer, J. Fuel Cell Sci. Tech. 12, 021003 (2015).Google Scholar
  31. 31.
    R. Devanathan, S. Thevuthasan, and J. D. Gale, Phys. Chem. Chem. Phys. 11, 5506 (2009).CrossRefGoogle Scholar
  32. 32.
    T. X. T. Sayle, S. C. Parker, and D. C. Sayle, J. Mater. Chem. 16, 1067 (2006).CrossRefGoogle Scholar
  33. 33.
    E. Ruiz-Trejo, J. D. Sirman, Yu. M. Baikov, et al., Solid State Ionics 113–115, 565 (1998).CrossRefGoogle Scholar
  34. 34.
    P. S. Manning, J. D. Sirman, and J. A. Kilner, Solid State Ionics 93, 125 (1997).CrossRefGoogle Scholar
  35. 35.
    A. Tarancón, A. Morata, F. Peiró, et al., Fuel Cells 11, 26 (2011).CrossRefGoogle Scholar
  36. 36.
    C. W. Huang, W. C. J. Wei, C. S. Chen, et al., J. Eur. Ceram. Soc. 31, 3159 (2011).CrossRefGoogle Scholar
  37. 37.
    Z. Q. Yu, R. Devanathan, W. Jiang, et al., Solid State Ionics 181, 367 (2010).CrossRefGoogle Scholar
  38. 38.
    T. Sakai, J. Hyodo, M. Ogushi, et al., Solid State Ionics 301, 156 (2017).CrossRefGoogle Scholar
  39. 39.
    R. Devanathan, S. Thevuthasan, and J. D. Gale, Phys. Chem. Chem. Phys. 11, 5506 (2009).CrossRefGoogle Scholar
  40. 40.
    A. K. Ivanov-Shitz and I. V. Murin, Ionics of Solid State (S.-Peterb. Gos. Univ., St. Petersburg, 2010), Vol. 2 [in Russian].Google Scholar
  41. 41.
    Y. Li and B. Hafskold, J. Phys.: Condens. Matter 7, 1255 (1995).Google Scholar
  42. 42.
    A. Azad, O. A. Marina, C. M. Wang, et al., Appl. Phys. Lett. 86, 131906 (2005).CrossRefGoogle Scholar
  43. 43.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, et al., Science 321, 676 (2008).CrossRefGoogle Scholar
  44. 44.
    H. Näfe, Ionics 24, 763 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. K. Ivanov-Schitz
    • 1
    Email author
  • I. Yu. Gotlib
    • 2
  • M. Z. Galin
    • 3
  • G. N. Mazo
    • 4
  • I. V. Murin
    • 2
  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute of Problems of Chemical Physics, Russian Academy of Sciences ChernogolovkaRussia
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations