Crystallography Reports

, Volume 64, Issue 3, pp 508–514 | Cite as

Crystallization of Calcium Phosphates from the Prototype of Blood Plasma in the Presence of Inorganic and Organic Impurities

  • O. A. GolovanovaEmail author


The crystallization processes in solutions modeling the human blood plasma composition have been investigated. It is revealed that the solid phases consist of OH-deficient water-containing carbonate apatite. The influence of impurities (magnesium and glutamic acid ions) on the crystallization of calcium phosphates is analyzed. The presence of additives in model solution is found to affect the phase composition of samples. The solubility of synthetic samples in solutions of different nature and verapamil preparation is studied. The kinetic characteristics of this process are established, and the dependence of dissolution rate on the experimental laboratory conditions is shown.



This study was supported by the Russian Foundation for Basic Research, project no. 15-29-04839 ofi_m.


  1. 1.
    O. A. Golovanova, O. V. Frank-Kamenetskaya, and Y. O. Punin, Russ. J. Gen. Chem. 81, 1392 (2011).CrossRefGoogle Scholar
  2. 2.
    K. Tetsuo, M. Ryoichi, H. Akihiko, et al., Clin. Electron Microsc. Soc. 36, 72 (2003).Google Scholar
  3. 3.
    A. Becker, M. Epple, and K. M. Mueller, Inorg. Biochem. 98, 2032 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Kazuyuki, D. Kolodgie Frank, and O. Fumiyuki, Nat. Rev. Cardiol. 10, 1038 (2015).Google Scholar
  5. 5.
    A. T. Titov, P. M. Larionov, V. S. Shchukin, et al., Poverkhnost, No. 3, 74 (2001).Google Scholar
  6. 6.
    D. Yu. Vlasov, M. S. Zelenskaya, K. V. Barinova, et al., Biomineralogy (Luts’k, Ukraine, 2008) [in Russian].Google Scholar
  7. 7.
    C. L. Indulekha Pillai, L. Shen, R. Milagros, et al., Cell. Stem. Cell. 20 (2), 218 (2017).CrossRefGoogle Scholar
  8. 8.
    A. T. Titov, P. M. Larionov, and V. I. Zaikovskii, Poverkhnost, No. 7, 66 (2000).Google Scholar
  9. 9.
    L. M. Lamanova, Vestn. Tomsk. Gos. Univ., No. 337, 194 (2010).Google Scholar
  10. 10.
    R. Marri, Biochemistry of Human (Mir: BINOM, Moscow, 2009), Vol. 2 [in Russian].Google Scholar
  11. 11.
    T. T. Berezov and M. A. Korovin, Biological Chemistry (Meditsina, Moscow, 2002) [in Russian].Google Scholar
  12. 12.
    O. A. Golovanova and A. A. Solodyankina, Crystallogr. Rep. 62 (2), 342 (2017).CrossRefGoogle Scholar
  13. 13.
    O. A. Golovanova and A. A. Solodyankina, Crystallogr. Rep. 62 (3), 497 (2017).CrossRefGoogle Scholar
  14. 14.
    I. R. Gibson, W. Bonfield, and M. Sayer, J. Biomed. 13, 697 (2002).Google Scholar
  15. 15.
    T. A. Yakhno, V. G. Yakhno, and A. V. Sokolov, Biofizika 50 (4), 726 (2005).Google Scholar
  16. 16.
    O. Lars-Fride, S. Karin, O. Rolf, et al., Inorg. Chem. 26, 4123 (2007).Google Scholar
  17. 17.
    A. Solodyankina, A. Nikolaev, O. Frank-Kamenetskaya, and O. Golovanova, J. Mol. Struct. 1119 (5), 484 (2016).
  18. 18.
    V. Nogueira Grazielle, S. Landulfo, Jr., A. Airton, et al., Biomed. Opt. 3, 10 (2005).Google Scholar
  19. 19.
    F. Pigozzi, Sports Med. Phys. Fitness 51, 260 (2011).Google Scholar
  20. 20.
    O. A. Golovanova, A. A. Tsyganova, and E. S. Chikanova, Glass Phys. Chem. 42 (6), 615 (2016).CrossRefGoogle Scholar
  21. 21.
    O. Frank-Kamenetskaya and A. Kol’tsov, Mol. Struct. 9, 9 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Dostoevsky Omsk State UniversityOmskRussia

Personalised recommendations