Crystallography Reports

, Volume 64, Issue 3, pp 474–478 | Cite as

Structure, Linear Thermal Expansion Coefficient, and Electrical Conductivity of Y0.9Ca0.1Cr1 – уCoуO3 (у = 0–0.9) Perovskites

  • V. K. Gil’derman
  • B. D. AntonovEmail author


The structure, thermal expansion coefficient, and electrical conductivity of Y0.9Ca0.1Cr1 – уCoуO3 (у = 0–0.9) compounds with the perovskite structure have been investigated in air in the temperature range of 100–1000°С. The linear thermal expansion coefficient of Y1  хCaхCr1 – уCoуO3 lies in the range of (8.77–16.1) × 10–6 K–1. The maximum electrical conductivity is attained for the Y0.9Ca0.1Cr0.6Co0.4O3 composition. It is shown that the electrical conductivity at low (25–270°С) temperatures and weak substitution of cobalt for chromium is mainly due to the hopping of one electron hole from Cr4+ to Cr3+. At high (565–1000°С) temperatures and cobalt contents, this conductivity mechanism is supplemented with the conductivity caused by the hopping of an electron hole from Cо3+ to Cо2+.



  1. 1.
    V. K. Gilderman, V. I. Zemtzov, and S. F. Palguev, Sens. Actuators, No. 18, 115 (1989).CrossRefGoogle Scholar
  2. 2.
    S. F. Palguev, V. K. Gilderman, and V. I. Zemtzov, Ceram. Intern. 13, 119 (1987).CrossRefGoogle Scholar
  3. 3.
    V. K. Gil’derman, I. D. Remez, and E. I. Burmakin, Elektrokhimiya 43, 500 (2007).Google Scholar
  4. 4.
    K. J. Yoon, J. W. Stevenson, and O. A. Marina, Solid State Ionics 193, 60 (2011).CrossRefGoogle Scholar
  5. 5.
    K. J. Yoon, C. N. Cramer, E. C. Thomsen, et al., J. Electrochem. Soc. 157, B856 (2010).CrossRefGoogle Scholar
  6. 6.
    T. R. Armstrong, J. W. Stevenson, D. E. McCready, et al., Solid State Ionics 92, 213 (1996).CrossRefGoogle Scholar
  7. 7.
    G. F. Carini, H. U. Anderson, M. M. Nasrallah, et al., J. Solid State Chem. 94, 329 (1991).CrossRefGoogle Scholar
  8. 8.
    G. F. Carini, H. U. Anderson, D. M. Sparlin, et al., Solid State Ionics 49, 233238 (1991).CrossRefGoogle Scholar
  9. 9.
    S. F. Pal’guev, V. K. Gil’derman, and V. I. Zemtsov, High-Temperature Oxide Electron Conductors for Electrochemical Devices (Nauka, Moscow, 1990) [in Russian].Google Scholar
  10. 10.
    W. Li, M. Gong, and X. Liu, ECS Trans. 57, 1479 (2013).CrossRefGoogle Scholar
  11. 11.
    M. V. Perfil’ev, A. K. Demin, B. L. Kuzin, and A. S. Lipilin, High-Temperature Electrolysis of Gases (Nauka, Moscow, 1988) [in Russian].Google Scholar
  12. 12.
    V. K. Gil’derman and B. D. Antonov, Proc. VI Int. Conf. “Fundamental Problems of Electrochemical Power Engineering,” Saratov, September 5–9, 2005, p. 84.Google Scholar
  13. 13.
    V. K. Gil’derman, Proc. IV Russ. Conf. “Physical Problems of Hydrogen Power Engineering,” St. Petersburg, November 26–28, 2007, p. 75.Google Scholar
  14. 14.
    R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  15. 15.
    E. G. Vaganov, V. P. Gorelov, N. M. Bogdanovich, et al., Elektrokhimiya 43, 695 (2007).Google Scholar
  16. 16.
    F. Tietz, Ionics, No. 5, 129 (1999).Google Scholar
  17. 17.
    V. K. Gil’derman, RF Patent No. 2583838 (January 21, 2015).Google Scholar
  18. 18.
    V. K. Gil’derman and B. D. Antonov, Elektrokhim. Energ. 11, 30 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences YekaterinburgRussia

Personalised recommendations