Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 998–1004 | Cite as

Comparison of the Structural Features of Micron and Submicron Vaterite Particles and Their Efficiency for Intranasal Delivery of Anesthetic to the Brain

  • D. B. Trushina
  • T. N. Borodina
  • S. N. Sulyanov
  • J. V. Moiseeva
  • N. V. Gulyaeva
  • T. V. Bukreeva
NANOMATERIALS AND CERAMICS

Abstract

Nanostructured spherical calcium carbonate particles with average sizes of 3.8 µm and 550 nm have been fabricated. Optimal conditions for adsorption of central anesthetic loperamide on these particles are found. The influence of particle size on the adsorption efficiency is studied. The efficiency of micron and submicron vaterite particles as carriers for intranasal loperamide delivery is compared using in vivo tests on laboratory animals.

Notes

ACKNOWLEDGMENTS

This study was performed using equipment of the Shared Research Center of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences with the support of the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and Photonics” RAS (no. 007-ГЗ/Ч3363/26) in the part of designing containers and studying their properties. Synchrotron studies were carried out on a unique research object, specialized Kurchatov Synchrotron Radiation Source “KSRS-Kurchatov,” with support of the Ministry of Education and Science of the Russian Federation (project code RFMEFI61917X0007).

REFERENCES

  1. 1.
    C. D. Chapman, W. H. Frey, C. Suzanne, et al., Pharm. Res. 30 (10), 2475 (2013).CrossRefGoogle Scholar
  2. 2.
    K. R. Jadhav, M. N. Gambhire, I. M. Shaikh, et al., Curr. Drug Ther. 2 (1), 27 (2007).CrossRefGoogle Scholar
  3. 3.
    L. Illum, Drug Discov. Today 7 (23), 1184 (2002).CrossRefGoogle Scholar
  4. 4.
    S. Bahadur and K. Pathak, Expert Opin. Drug Deliv. 9 (1), 19 (2012).CrossRefGoogle Scholar
  5. 5.
    P. C. Pires and A. O. Santos, J. Control Release Elsevier 270, 89 (2018).CrossRefGoogle Scholar
  6. 6.
    A. M. Privalova, N. V. Gulyaeva, and T. V. Bukreeva, Neurochem. J. 6 (2), 77 (2012).CrossRefGoogle Scholar
  7. 7.
    K. Ohkubo, J. N. Baraniuk, M. Merida, et al., J. Allergy Clin. Immunol. 96 (6), 924 (1995).CrossRefGoogle Scholar
  8. 8.
    X. Zhang, Drug Metab. Dispos. 33 (10), 1423 (2005).CrossRefGoogle Scholar
  9. 9.
    L. Kürti, A. Kukovecz, G. Kozma, et al., Powder Technol. 212 (1), 210 (2011).CrossRefGoogle Scholar
  10. 10.
    S. El mir, A. Casanova, D. Betbeder, et al., Eur. J. Cancer 37 (8), 1053 (2001).Google Scholar
  11. 11.
    E. Touitou, B. Godin, and S. Duchi, US Patent No. 20090047234A1 (2009).Google Scholar
  12. 12.
    H.-W. Sung, H.-F. Liang, and H. Tu, US Patent No. 7871990 (2001).Google Scholar
  13. 13.
    G. Shahnaz, A. Vetter, J. Barthelmes, et al., Int. J. Pharm. 428 (1–2), 164 (2012).CrossRefGoogle Scholar
  14. 14.
    T. Yang, A. Hussain, S. Bai, et al., J. Control Release 115 (3), 289 (2006).CrossRefGoogle Scholar
  15. 15.
    G. Mustafa, S. Baboota, A. Ahuja, et al., Curr. Nanosci. 8 (3), 348 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    J. K. Vasir, K. Tambwekar, and S. Garg, Int. J. Pharm. 255 (1–2), 13 (2003).CrossRefGoogle Scholar
  17. 17.
    Y. Miyazaki, Int. J. Pharm. 258 (1–2), 21 (2003).CrossRefGoogle Scholar
  18. 18.
    G. Borchard, H. L. Lueßen, A. G. de Boer, et al., J. Control Release 39 (2–3), 131 (1996).CrossRefGoogle Scholar
  19. 19.
    F. Ishikawa, M. Murano, M. Hiraishi, et al., Pharm. Res. 19 (8), 1097 (2002).CrossRefGoogle Scholar
  20. 20.
    D. B. Trushina, T. V. Bukreeva, and M. N. Antipina, Cryst. Growth Des. 16 (3), 1311 (2016).CrossRefGoogle Scholar
  21. 21.
    D. B. Trushina, S. N. Sul’yanov, T. V. Bukreeva, et al., Crystallogr. Rep. 60 (4), 570 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    R. N. Alyautdin, V. E. Petrov, K. Langer, et al., Pharm. Res. 14 (3), 325 (1997).CrossRefGoogle Scholar
  23. 23.
    T. N. Borodina, D. B. Trushina, I. V. Marchenko, et al., Bionanoscience 6 (3), 261 (2016).CrossRefGoogle Scholar
  24. 24.
    D. V. Volodkin, N. I. Larionova, and G. B. Sukhorukov, Biomacromolecules 5 (5), 1962 (2004).CrossRefGoogle Scholar
  25. 25.
    S. N. Sulyanov, A. N. Popov, and D. M. Kheiker, J. Appl. Crystallogr. 27 (6), 934 (1994).CrossRefGoogle Scholar
  26. 26.
    T. Ida, Powder Diffr. 31 (3), 216 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    J.P.F. Rodriguez-Carvajal Program FullProf. http://www.ill.eu/sites/fullprof.Google Scholar
  28. 28.
    A. Le Bail, S. Ouhenia, and D. Chateigner, Powder Diffr. 26 (1), 16 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    A. Katerinopoulou, T. Balic-Zunic, and L. F. Lundegaard, J. Appl. Crystallogr. 45 (1), 22 (2012).CrossRefGoogle Scholar
  30. 30.
    P. Scardi and M. Leoni, J. Appl. Crystallogr. 32 (4), 671 (1999).CrossRefGoogle Scholar
  31. 31.
    B. K. Matthies and K. B. J. Franklin, Pain 51 (2), 199 (1992).CrossRefGoogle Scholar
  32. 32.
    B. K. Matthies and K. B. J. Franklin, Behav. Brain Res. 67 (1), 59 (1995).CrossRefGoogle Scholar
  33. 33.
    F. E. D’Amour and D. L. Smith, J. Pharmacol. Exp. Ther. 72, 74 (1941).Google Scholar
  34. 34.
    T. E. King, R. L. Joynes, and J. W. Grau, Behav. Neurosci. 111 (4), 754 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • D. B. Trushina
    • 1
    • 2
    • 3
  • T. N. Borodina
    • 3
    • 2
  • S. N. Sulyanov
    • 3
    • 1
  • J. V. Moiseeva
    • 4
  • N. V. Gulyaeva
    • 4
  • T. V. Bukreeva
    • 1
    • 3
  1. 1.National Research Centre “Kurchatov Institute,”MoscowRussia
  2. 2.Sechenov First Moscow State Medical University of the Ministry of Health of the Russian FederationMoscowRussia
  3. 3.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscowRussia

Personalised recommendations