Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 916–924 | Cite as

Synthesis, Crystal Structure, FT-IR Spectral Studies and Hirshfeld Surface Analysis of 3-Amino-5,6-dimethyl-1,2,4-triazine/3-Amino-5,6-dimethyl-1,2,4-triazinium-2 2-hydroxybenzoate and 3-Amino-5,6-dimethyl-1,2,4-triazinium-2 hydrogen phthalate

  • R. Sangeetha
  • K. Balasubramani
STRUCTURE OF ORGANIC COMPOUNDS

Abstract

The title molecular salts (C5H9N\(_{4}^{ + }\))(C5H8N4)(C7H5O\(_{3}^{ - }\)) (I) and (C5H9N\(_{4}^{ + }\))(C8H5O\(_{4}^{ - }\)) (II) have been synthesized and characterized by single crystal X-ray diffraction, FT-IR and Hirshfeld surface analysis. I crystallizes in monoclinic system, sp. gr. P21/c, Z = 4. II crystallizes in triclinic system, sp. gr. P\(\bar {1}\), Z = 2. Both crystal structures are stabilized by N–H···O, N–H···N, O–H···O hydrogen bonds and weak π–π stacking interactions and form a ring motifs (\(R_{2}^{2}\)(8)) containing N+–H···O charge-assisted hydrogen bonds. FT-IR spectra confirm the presence of the functional groups in the synthesized compounds. Hirshfeld surface analysis was employed in order to study intermolecular interactions.

Notes

ACKNOWLEDGMENTS

KB thanks the Department of Science and Technology (DST-SERB), New Delhi, India, for financial support (grant no. SB/ FT/CS-058/2013), RS thanks the Department of Science and Technology (DST), New Delhi, India, for financial support in the form of INSPIRE fellowship (INSPIRE code no. IF131050). The authors wish to thank SAIF-STIC, Cochin, Kerala for collecting the single crystal X-ray diffraction.

REFERENCES

  1. 1.
    M. G. Valverde and T. Torroba, Molecules 10, 318 (2005).CrossRefGoogle Scholar
  2. 2.
    R. Kumar, T.S. Sirohi, H. Singh, et al., Mini Rev. Med. Chem. 14, 168 (2014).CrossRefGoogle Scholar
  3. 3.
    R. Sangeetha, K. Balasubramani, K. Thanigaimani, and I. Abdul Razak, IUCrData 2, x170829 (2017).CrossRefGoogle Scholar
  4. 4.
    T. P. Singh and M. Vijayan, Acta Crystallogr. B 30, 557 (1974).CrossRefGoogle Scholar
  5. 5.
    K. I. Varughese and G. Kartha, Acta Crystallogr. B 38, 301, (1982).CrossRefGoogle Scholar
  6. 6.
    S. H. Dale, M. R. J. Elsegood, M. Hemmings, and A. L. Wilkinson, Cryst. Eng. Commun. 6, 207 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Ballabh, D. R. Trivedi, and P. Dastidar, Cryst. Growth. Des. 5, 1548 (2004).Google Scholar
  8. 8.
    G. J. Perpétuo and J. Janczak, Acta Crystallogr. C 63, o271 (2007).CrossRefGoogle Scholar
  9. 9.
    M. H. Habibi, M. Zendehdel, K. Barati, et al., Acta Crystallogr. C 63, o474 (2007).CrossRefGoogle Scholar
  10. 10.
    S. Sheshmani, M. Ghadermazi, H. Aghabozorg and B. Nakhjavan, Acta Crystallogr. E 62, o4681 (2006).CrossRefGoogle Scholar
  11. 11.
    Bruker APEX 2, SAINT (Bruker AXS-INC., Madison, Wisconsin, USA, 2004).Google Scholar
  12. 12.
    G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    P. Sivajeyanthi, M. Jeevaraj, B. Edison, and K. Balasubramani, Acta Crystallogr. E 73, 1029 (2017).CrossRefGoogle Scholar
  14. 14.
    M. H. Wu, Q. M. Qiu, S. Gao, et al., Acta Crystallogr. E 68, o39 (2012).CrossRefGoogle Scholar
  15. 15.
    K. Thanigaimani, P. T. Muthiah, and D. E. Lynch, Acta Crystallogr. E 63, o4555 (2007).CrossRefGoogle Scholar
  16. 16.
    A. Rajam, P. T. Muthiah, R. J. Butcher, and J. P. Jasinski, Acta Crystallogr. E 71, o479, (2015).CrossRefGoogle Scholar
  17. 17.
    R. Jagan and K. Sivakumar, Acta Crystallogr. C 67, o373 (2011).CrossRefGoogle Scholar
  18. 18.
    D. E. Lynch, L. C. Thomas, G. Smith, et al., Aust. J. Chem. 51, 867 (1998).CrossRefGoogle Scholar
  19. 19.
    G. Smith and J. M. White, Aust. J. Chem. 54, 97 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Government Arts College(Autonomous)TamilnaduIndia

Personalised recommendations