Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 909–915 | Cite as

Molecular and Crystal Structure of the Cocrystal of p-n-Heptyloxybenzoic Acid‒p-n-Hexyloxybenzoic Acid, Obtained in the System of Mesomorphic Acids

  • L. A. Nosikova
  • A. N. Kochetov
  • Z. A. Kudryashova
  • A. B. Melnikov
  • A. V. Churakov
  • L. G. Kuzmina
STRUCTURE OF ORGANIC COMPOUNDS

Abstract

The structure of the p-n-heptyloxybenzoic acid–p-n-hexyloxybenzoic acid crystal, obtained in the dual system of homologues of p-n-alkyloxybenzoic acids exhibiting mesomorphic properties has been studied by X-ray diffraction analysis at a temperature of 120 K. The crystals are triclinic, sp. gr. P\(\bar {1}\), a = 4.6380(7) Å, b = 8.0158(12) Å, c= 17.673(3) Å, α = 81.019(7)°, β = 85.632(7)°, γ = 76.935(7)°, Z = 2. The molecules in the cocrystal are combined in dimers by hydrogen bonds. The probability and conditions of the formation of cocrystals of the 1 : 1 and 1 : 2 compositions in such systems are discussed.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation (grant no. 16-13-10273).

REFERENCES

  1. 1.
    T. Kato, N. Mizoshita, and K. Kishimoto, Angew. Chem. Int. Ed. 45, 38 (2006).CrossRefGoogle Scholar
  2. 2.
    L. M. Blinov, Liquid Crystals: Structure and Properties (LIBROKOM, Moscow, 2013) [in Russian].Google Scholar
  3. 3.
    C. Tschierske, Angew. Chem. Int. Ed. 52, 1 (2013).CrossRefGoogle Scholar
  4. 4.
    C. M. Paleos and D. Tsiourvas, Liq. Cryst. 28 (8), 1127 (2001).CrossRefGoogle Scholar
  5. 5.
    A. Treybig, C. Dorsheid, H. Kresse, and W. Weissflog, Mol. Cryst. Liq. Cryst. 260, 369 (1995).CrossRefGoogle Scholar
  6. 6.
    M. C. Etter, J. Phys. Chem. 95, 4601 (1991).CrossRefGoogle Scholar
  7. 7.
    S. Laschat, A. Baro, F. Giesselmann, et al., Angew. Chem. Int. Ed. 46, 4832 (2007).CrossRefGoogle Scholar
  8. 8.
    S. I. Torgova, L. Komitov, and A. Strigazzi, Liq. Cryst. 24 (1), 131 (1998).CrossRefGoogle Scholar
  9. 9.
    T. Kato, T. Uryu, F. Kaneuchi, et al., Liq. Cryst. 14 (5), 1311 (1993).CrossRefGoogle Scholar
  10. 10.
    A. V. Ivashchenko, Zh. Fiz. Khim. 51 (8), 2389 (1977).Google Scholar
  11. 11.
    T. Kato and J. M. J. Frechet, J. Am. Chem. Soc. 111, 8533 (1989).CrossRefGoogle Scholar
  12. 12.
    V. V. Krasnogolovets, G. A. Puchkovskaya, and A. A. Yakubov, Khim. Fiz. 11 (6), 806 (1992).Google Scholar
  13. 13.
    L. M. Babkov, G. A. Puchkovskaya, and S. P. Makarenko, IR Spectroscopy of Molecular Crystals with Hydrogen Bonds (Naukova dumka, Kiev, 1989) [in Russian].Google Scholar
  14. 14.
    N. K. Lokanath and M. A. Sridhar, Liq. Cryst. 27 (6), 767 (2000).CrossRefGoogle Scholar
  15. 15.
    V. P. Privalko and G. A. Puchkovskaya, Mol. Cryst. Liq. Cryst. 126 (2–4), 289 (1985).CrossRefGoogle Scholar
  16. 16.
    P. A. Kumar, P. Swathi, V. G. K. M. Pisipati, and A. V. Rajeswaris, Phase Trans. 76 (7), 625 (2003).CrossRefGoogle Scholar
  17. 17.
    M. Srinivasulu, P. V. V. Satyanayana, P. A. Kumar, and V. G. K. M. Pisipati, Liq. Cryst. 28 (9), 1321 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Pisupati, P. A. Kumar, and V. G. K. M. Pisipaty, Liq. Cryst. 28 (8), 1163 (2001).CrossRefGoogle Scholar
  19. 19.
    X. Song, J. Li, and S. Zhang, Liq. Cryst. 30 (3), 331 (2003).CrossRefGoogle Scholar
  20. 20.
    R. I. Nessim and I. E. Albalaa, Nature Sci. 12 (11), 108 (2014).Google Scholar
  21. 21.
    Y. G. Sıdır and İ. Sıdır, J. Mol. Liq. 211, 591 (2015).CrossRefGoogle Scholar
  22. 22.
    T. Liang, Y. Wu, S. Tan, et al., Chem. Phys. Lett. 637, 22 (2015).ADSCrossRefGoogle Scholar
  23. 23.
    S. Ahmed and M. M. Rahman, J. Mol. Liq. 224, 265 (2016).CrossRefGoogle Scholar
  24. 24.
    H. Lu, J. Wang, and X. Song, Mol. Cryst. Liq. Cryst. 537, 93 (2011).CrossRefGoogle Scholar
  25. 25.
    R. F. Bryan, P. Hartley, and R. W. Miller, Mol. Cryst. Liq. Cryst. 62, 281 (1980).CrossRefGoogle Scholar
  26. 26.
    A. Sparavigna, A. Melloy, and B. Montrucchioz, Phase Trans. 79 (4–5), 293 (2006).CrossRefGoogle Scholar
  27. 27.
    E. A. Hluchow, P. A. Santoro, L. R. Evangelista, and A. J. Palangana, J. Mol. Liq. 133, 43 (2007).CrossRefGoogle Scholar
  28. 28.
    R. F. Braian, Zh. Strukt. Khim. 23 (1), 154 (1982).Google Scholar
  29. 29.
    A. N. Kochetov, L. G. Kuz’mina, A. V. Churakov, et al., Crystallogr. Rep. 51 (1), 53 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    L. A. Nosikova, Z. A. Kudryashova, L. D. Iskhakova, and A. Yu. Tsivadze, Russ. J. Phys. Chem. A 84 (8), 1263 (2007).CrossRefGoogle Scholar
  31. 31.
    L. G. Kuz’mina, N. S. Kucherepa, S. M. Pestov, et al., Crystallogr. Rep. 54 (5), 862 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    R. F. Bryan, P. Hartley, and R. W. Miller, Mol. Cryst. Liq. Cryst. 62, 311 (1980).CrossRefGoogle Scholar
  33. 33.
    U. Nazir, A. Zareen, M. Bolte, et al., Acta Crystallogr. E 63, 12 (2007).CrossRefGoogle Scholar
  34. 34.
    N. S. Kucherepa, Extended Abstract of Candidate’s Dissertation in Chemistry (Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 2009).Google Scholar
  35. 35.
    L. A. Nosikova, Z. A. Kudryashova, L. D. Iskhakova, and S. A. Syrbu, Russ. J. Phys. Chem. A 82 (12), 2065 (2008).CrossRefGoogle Scholar
  36. 36.
    N. V. Kalinin, A. V. Emelyanenko, L. A. Nosikova, et al., Phys. Rev. E 87 (6), 062502 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    S. A. Syrbu, Z. A. Kudryashova, L. A. Nosikova, et al., Zhidk. Krist. Ikh Prakt. Ispol’z., No. 2, 95 (2013).Google Scholar
  38. 38.
    S. A. Syrbu, Z. A. Kudryashova, L. A. Nosikova, et al., Organic and Hybrid Nanomaterials: Tendencies and Prospects (Ivanovo Gos. Univ., Ivanovo, 2013) [in Russian], p. 281.Google Scholar
  39. 39.
    E. I. Efremova, A. A. Shiryaev, Z. A. Kydryashova, et al., Phase Trans. 88 (5), 503 (2015).CrossRefGoogle Scholar
  40. 40.
    E. I. Efremova, Z. A. Kydryashova, L. A. Nosikova, et al., Mol. Cryst. Liq. Cryst. 626 (1), 1 (2016).CrossRefGoogle Scholar
  41. 41.
    M. Roman, A. Kaeding-Koppers, and P. Zugenmaier, Can. J. Chem. 86, 525 (2008).CrossRefGoogle Scholar
  42. 42.
    P. Zugenmaier, I. Bock, and J. Schacht, Mol. Cryst. Liq. Cryst. 392, 31 (2003).CrossRefGoogle Scholar
  43. 43.
    S. L. Childs, N. Rodrnguez-Hornedo, L. S. Reddy, et al., Cryst. Eng. Commun. 10, 856 (2008).CrossRefGoogle Scholar
  44. 44.
    D. P. McNamara, S. L. Childs, J. Giordano, et al., Pharm. Res. 23, 1888 (2006).CrossRefGoogle Scholar
  45. 45.
    Z. Sideratou, D. Tsiourvas, and C. M. Paleos, Liq. Cryst. 22 (1), 51 (1997).CrossRefGoogle Scholar
  46. 46.
    T. Kato, M. Fukumasa, and J. M. J. Frechet, Chem. Mater. 7, 368 (1995).CrossRefGoogle Scholar
  47. 47.
    H. Xu, N. Kang, P. Xie, and R. Zhang, Mol. Cryst. Liq. Cryst. 373, 119 (2002).CrossRefGoogle Scholar
  48. 48.
    P. A. Raffo, L. Rossi, P. Albors, et al., J. Mol. Struct. 1070, 86 (2014).ADSCrossRefGoogle Scholar
  49. 49.
    S. Javadian, N. Dalir, A. G. Gilani, et al., J. Chem. Thermodyn. 80, 22 (2015).CrossRefGoogle Scholar
  50. 50.
    M. D. Miranda, F. V. Chavez, T. M. R. Mariae, et al., Liq. Cryst. 41 (12), 1743 (2014).CrossRefGoogle Scholar
  51. 51.
    E. Stoler and J. C. Warner, Molecules 20, 14833 (2015).CrossRefGoogle Scholar
  52. 52.
    S. Cherukuvada and T. N. G. Row, Cryst. Growth. Des. 1 (2014).Google Scholar
  53. 53.
    E. Lu, N. Rodrrıguez-Hornedo, and R. Suryanarayanan, Cryst. Eng. Commun. 10, 665 (2008).CrossRefGoogle Scholar
  54. 54.
    D. P. McNamara, S. L. Childs, J. Giordano, et al., Pharm. Res. 23, 1888 (2006).CrossRefGoogle Scholar
  55. 55.
    R. R. Schartman, J. Pharm. 365, 77 (2009).Google Scholar
  56. 56.
    X. Wei, A. Zhang, Y. Ma, et al., Cryst. Eng. Commun. 17, 9037 (2015).CrossRefGoogle Scholar
  57. 57.
    SAINT. Version 6.02A (Bruker AXS, Madison, WI, 2001).Google Scholar
  58. 58.
    SHELXTL-Plus. Version 5.10 (Bruker AXS, Madison, WI, 1997).Google Scholar
  59. 59.
    P. Zugenmaier, Int. J. Mol. Sci. 12, 7360 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • L. A. Nosikova
    • 1
    • 2
  • A. N. Kochetov
    • 1
  • Z. A. Kudryashova
    • 1
    • 2
  • A. B. Melnikov
    • 3
  • A. V. Churakov
    • 4
  • L. G. Kuzmina
    • 4
  1. 1.MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)MoscowRussia
  2. 2.Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations