Crystallography Reports

, Volume 63, Issue 6, pp 961–963 | Cite as

Magnetostimulated Changes in the Microhardness of KDP Crystals with Embedded TiO2 Nanoparticles

  • E. V. DarinskayaEmail author
  • M. V. KoldaevaEmail author
  • V. I. Alshits
  • I. M. Pritula
  • A. E. Voloshin


The dependence of the microhardness of KDP crystals with embedded TiO2 nanoparticles on the time passed after their exposure to a dc magnetic field has been analyzed. Samples cut from different growth sectors are found to be differently affected by magnetic treatment. In the absence of TiO2 impurity, the microhardness of the samples from the {100} growth sector decreases after the magnetic exposure, whereas the microhardness of the samples cut from the {101} growth sector changes in two stages (hardening after softening). With an increase in the TiO2 concentration, the softening stage gradually disappears in the crystals from both growth sectors. In the KDP:TiO2 crystals from the {100} sector, hardening (which was absent previously) occurs instead of softening. In the crystals from the {101} sector, the hardening arises after a shorter time.



This study was supported by the Federal Agency for Scientific Organizations (contract no. 007-GZ/Ch3363/26) and a grant of the Presidium of the Russian Academy of Sciences (program no. 32 for 2018–2020).


  1. 1.
    I. Pritula, V. Gayvoronsky, M. Kopylovsky, et al., J. Funct. Mater. 15, 420 (2008).Google Scholar
  2. 2.
    V. G. Grachev, I. A. Vrable, G. I. Malovichko, et al., J. Appl. Phys. 112, 014315 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    A. V. Kosinova, M. I. Kolybaeva, O. N. Bezkrovnaya, et al., Cryst. Res. Technol. 49, 965 (2014).CrossRefGoogle Scholar
  4. 4.
    G. Duchateau, Opt. Express 17, 10434 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, Crystallogr. Rep. 48 (5), 768 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Urusovskaya, V. I. Alshits, A. E. Smirnov, and N. N. Bekkauer, Crystallogr. Rep. 48 (5), 796 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. I. Golovin, Phys. Solid State 46, 789 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    R. B. Morgunov, Phys. Usp. 47, 125 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, Dislocations in Solids, Vol. 14, Ed. by J. P. Hirth (Elsevier, Amsterdam, 2008), p. 333.Google Scholar
  10. 10.
    V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, JETP Lett. 104, 353 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    A. E. Smirnov, N. N. Bekkauer, and A. E. Voloshin, Phys. Solid State 47, 1296 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia
  2. 2.Institute for Single Crystals, National Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations