Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 994–997 | Cite as

UV-Sensitive Porous ZnO-Based Nanocrystalline Films

  • A. Sh. Asvarov
  • A. Kh. Abduev
  • A. K. Akhmedov
  • V. M. Kanevsky
  • A. E. Muslimov
NANOMATERIALS AND CERAMICS

Abstract

Nanocrystalline porous ZnO films have been synthesized by thermal oxidation of amorphous zinc deposits with an anomalously developed surface, which were previously formed using magnetron sputtering. The microstructure, morphology, phase composition, and optical properties of the synthesized oxide films have been studied by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and spectrophotometry. Applicability of the two-stage technique to fabrication of porous ZnO films for UV detectors is demonstrated.

Notes

ACKNOWLEDGMENTS

This study was carried out in the framework of state task no. АААА-А17-117021310364-1 and supported in part by the Federal Agency for Scientific Organizations(contract no. 007-ГЗ/Ч3363/26). The equipment of the Analytical Center of Collective Use of the Dagestan Scientific Center, Russian Academy of Sciences, and the Center of Collective Use “Structural Diagnostics of Materials” of the Shubnikov Institute of Crystallography, Russian Academy of Sciences, was used.

REFERENCES

  1. 1.
    T. V. Blank and Yu. A. Gol’dberg, Semiconductors 37 (9), 999 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    A. E. Muslimov, A. V. Butashin, V. M. Kanevskii, et al., Crystallogr. Rep. 62 (3), 460 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    S. P. Ghosh, K. C. Das, N. Tripathy, et al., IOP Conf. Ser.: Mater. Sci. Eng. 115, 012035 (2016).Google Scholar
  4. 4.
    L. Zhu and W. Zeng, Sens. Actuators A 267, 242 (2017).CrossRefGoogle Scholar
  5. 5.
    A. Pimentel, S. H. Ferreira, D. Nunes, et al., Materials 9, 299 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    A. Shkurmanov, Ch. Sturm, H. Franke, et al., Nanoscale Res. Lett. 12, 134 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    H. H. Wang, S. J. Dong, Y. Chang, et al., Appl. Surf. Sci. 258, 4288 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    X. Lin and M. Chen, Appl. Sci. 6, 259 (2016).CrossRefGoogle Scholar
  9. 9.
    A. S. Kornyushchenko, A. H. Jayatissa, V. V. Natalich, and V. I. Perekrestov, Thin Solid Films 604, 48 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    T.-J. Hsueh and C.-L. Hsu, Sens. Actuators B 131, 572 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Kh. Abduev, A. K. Akhmedov, A. Sh. Asvarov, et al., Crystallogr. Rep. 62 (1), 133 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    A. Kushwaha and M. Aslam, J. Appl. Phys. 112, 054316 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    J. Bao, I. Shalish, Z. Su, et al., Nanoscale Res. Lett. 6, 404 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    M. W. Chen, J. R. D. Retamal, C. Y. Chen, and J. H. He, IEEE Electron Device Lett. 33, 411 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    J. Reemts and A. Kittel, J. Appl. Phys. 101, 013709 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. Sh. Asvarov
    • 1
    • 2
  • A. Kh. Abduev
    • 1
  • A. K. Akhmedov
    • 1
  • V. M. Kanevsky
    • 3
  • A. E. Muslimov
    • 3
  1. 1.Institute of Physics, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia
  2. 2.Analytical Center of Collective Use, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia
  3. 3.Shubnikov Institute of Crystallography, Federal Research Center “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia

Personalised recommendations