Advertisement

Crystallography Reports

, Volume 63, Issue 6, pp 955–960 | Cite as

X-ray Diffraction Study of Bacterial Nanocellulose Produced by the Medusomyces gisevii Sa-12 Culture in Enzymatic Hydrolysates of Oat Hulls

  • L. A. Aleshina
  • E. K. Gladysheva
  • V. V. Budaeva
  • E. A. Skiba
  • N. A. Arkharova
  • G. V. Sakovich
STRUCTURE OF MACROMOLECULAR COMPOUNDS

Abstract

Bacterial nanocellulose (BNC) samples were produced by the symbiotic culture Мedusomyces gisevii Sa-12 in synthetic nutrient medium and enzymatic hydrolysates of chemically treated oat hulls and studied by X-ray diffraction. The structural characteristics of the crystalline component of BNC samples were determined. A comparison of the X-ray diffraction patterns recorded in reflection and transmission geometry shows that the samples have an anisotropic structure. All BNC samples are characterized by a high degree of crystallinity (from 86 to 93%) and are mainly composed of the low-symmetry metastable phase Iα (its fraction is 93.6–100%). The Мedusomyces gisevii Sa-12 culture was found to produce highly crystalline BNC, with the low-symmetry phase Iα prevailing, regardless of the composition of the nutrient medium.

Notes

ACKNOWLEDGMENTS

The study was supported by the Russian Science Foundation, project no. 17-19-01054; the experimental studies were supported by the Federal Agency for Scientific Organizations, agreement no. 007-Г3/Ч3363/26.

REFERENCES

  1. 1.
    M. N. Belgacem and A. Gandini, Monomers. Polymers and Composites from Renewable Resources (Elsevier, Amsterdam, 2008).Google Scholar
  2. 2.
    Bacterial Nanocellulose from Biotechnology to Bio-Economy, Ed. by M. Gama (Elsevier, Amsterdam, 2016).Google Scholar
  3. 3.
    V. V. Klechkovskaya, Yu. G. Baklagina, N. D. Stepina, et al., Crystallogr. Rep. 48 (5), 755 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    S. Sheykhnazari, T. Tabarsa, A. Ashori, et al., Carbohydr. Polym. 86 (3), 1187 (2011).CrossRefGoogle Scholar
  5. 5.
    E. A. Hassan, H. M. Abdelhady, S. S. A. El-Salam, and S. M. Abdullah, Br. Microbiol. Res. J. 9 (3), 1 (2015).CrossRefGoogle Scholar
  6. 6.
    X.-Y. Yang, C. Huang, H.-J. Guo, et al., J. Appl. Microbiol. 115, 995 (2013).Google Scholar
  7. 7.
    F. D. E. Goelzer, P. C. S. Faria-Tischer, J. C. Vitorino, et al., Mater. Sci. Eng. 29 (2), 546 (2009).CrossRefGoogle Scholar
  8. 8.
    E. Tsouko, C. Kourmentza, D. Ladakis, et al., Int. J. Mol. Sci. 16 (7), 14832 (2015).CrossRefGoogle Scholar
  9. 9.
    K. Cheng, J. Catchmark, and A. Demirci, J. Biol. Eng. 3 (12), 1 (2009).CrossRefGoogle Scholar
  10. 10.
    A. Vazquez, M. L. Foresti, P. Cerrutti, and M. Galvagno, J. Polym. Environ. 21 (2), 545 (2013).CrossRefGoogle Scholar
  11. 11.
    L. L. Zhou, D. P. Sun, L. Y. Hu, et al., J. Ind. Microbiol. Biotechnol. 34, 483 (2007).CrossRefGoogle Scholar
  12. 12.
    V. V. Budaeva, E. I. Makarova, and Yu. A. Gismatulina, Key Eng. Mater. 670, 202 (2016).CrossRefGoogle Scholar
  13. 13.
    V. V. Budaeva, E. A. Skiba, O. V. Baibakova, et al., Catal. Industry 8 (1), 81 (2016).CrossRefGoogle Scholar
  14. 14.
    E. I. Makarova, V. V. Budaeva, A. A. Kukhlenko, and S. E. Orlov, 3 Biotech, No. 7, 317 (2017).Google Scholar
  15. 15.
    M. N. Denisova, E. I. Makarova, I. N. Pavlov, et al., Biotechnol. Appl. Biochem. 178 (6), 1196 (2016).CrossRefGoogle Scholar
  16. 16.
    W. N. Goh, A. Rosma, B. Kaur, et al., Int. Food Res. J. 19 (1), 109 (2012).Google Scholar
  17. 17.
    E. K. Gladysheva, Sovrem. Naukoemkie Tekhnol., Nos. 8-1, 36 (2016).Google Scholar
  18. 18.
    Program “Rietveld Method” no. 2006610292 on March 27, 2006. Software Complex PDWin–4.0 (NPO Burevestnik, St. Petersburg, 2004) [in Russian].Google Scholar
  19. 19.
    L. B. McCusker, Dreele. R. B. Von, D. E. Cox, et al., J. Appl. Crystallogr. 32, 36 (1999).CrossRefGoogle Scholar
  20. 20.
    M. Ioelovich, A. Leykin, and O. Figorsky, Bioresur. 5 (3), 1393 (2010).Google Scholar
  21. 21.
    N. Terinte, R. Ibbett, and K. C. Schuster, Lenzinger Ber. 89, 118 (2011).Google Scholar
  22. 22.
    P. Ahvenainen, I. Kontro, and K. Svedstrom, Cellulose 23 (2), 1073 (2016).CrossRefGoogle Scholar
  23. 23.
    M. Khandelwal, A. H. Windle, and N. Hessler, J. Mater. Sci. 51 (10), 4839 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    N. V. Melekh, S. V. Frolova, and L. A. Aleshina, Polym. Sci. A 56 (2), 129 (2014).CrossRefGoogle Scholar
  25. 25.
    L. A. Aleshina and O. N. Shivrin, X-Ray Analysis of Crystals (Palmarium, Saarbrucken, 2012)Google Scholar
  26. 26.
    A. I. Prusskii and L. A. Aleshina, Structure and Physicochemical Properties of Celluloses and Nanocomposites on Their Basis (Izd-vo PetrGU, Petrozavodsk, 2014) [in Russian], p. 98.Google Scholar
  27. 27.
    A. D. French and P. S. Howley, Cellulose and Wood-Chemistry and Technology, Ed. by C. Schuerch (Wiley, New York, 1989).Google Scholar
  28. 28.
    A. D. French, Cellulose 21, 885 (2014).CrossRefGoogle Scholar
  29. 29.
    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124, 9074 (2002).CrossRefGoogle Scholar
  30. 30.
    Y. Nishiyama, H. Chanzy, and P. Langan, J. Am. Chem. Soc. 125, 14300 (2003).CrossRefGoogle Scholar
  31. 31.
    L. A. Aleshina, S. V. Glazkova, L. A. Lugovskaya, et al., Khim. Rastit. Syr’ya, No. 1, 5 (2001).Google Scholar
  32. 32.
    J. Sugiyama, R. Vuong, and H. Chanzy, Macromolecules 24 (14), 4168 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    W. N. Goh, A. Rosma, B. Kaur, et al., Int. Food Res. J. 19 (1), 153 (2012).Google Scholar
  34. 34.
    B. Anwar, B. Bundjali, and I. M. Arcana, Procedia Chem. 16, 279 (2015).CrossRefGoogle Scholar
  35. 35.
    D. I. Yurkevich and V. P. Kutyshenko, Biofizika, No. 6, 1116 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • L. A. Aleshina
    • 1
  • E. K. Gladysheva
    • 2
  • V. V. Budaeva
    • 2
  • E. A. Skiba
    • 2
  • N. A. Arkharova
    • 3
  • G. V. Sakovich
    • 2
  1. 1.Petrozavodsk State UniversityPetrozavodskRussia
  2. 2.Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of SciencesBiiskRussia
  3. 3.Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of SciencesMoscowRussia

Personalised recommendations