Skip to main content
Log in

Investigation into the seismoacoustic properties of specific polycrystalline materials used in nuclear reactors

  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The characteristics of the wave fields observed during the transmission of quasi-longitudinal ultrasonic waves through polycrystalline graphite samples have been studied. The specific features of propagation of elastic waves in a bilayer medium, where one of the layers (isotropic) is an acrylic glass hemisphere and the other (anisotropic) is a polycrystalline porous graphite hemisphere, are considered. The velocities and propagation times of quasi-longitudinal waves in polycrystalline graphite samples and a bilayer acrylic glass-graphite sample in different directions are experimentally measured by ultrasonic spatial sounding. The experimental results are compared with theoretical calculations using the data on graphite crystallographic texture obtained previously by neutron diffraction. The reasons for the discrepancy between the theoretical and experimental characteristics of elastic waves in the media under study are established and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Balakirev and I. A. Gilinskii, Waves in Piezoelectric Crystals (Nauka, Novosibirsk, 1982), p. 52.

    Google Scholar 

  2. V. Babuska and M. Cara, Seismic Anisotropy in the Earth (Kluwer, Netherlands, 1991).

    Book  Google Scholar 

  3. I. O. Osipov, Izv. Akad. Nauk SSSR, Ser. Geofiz., No. 5, 649 (1961).

  4. K. S. Aleksandrov, Sov. Phys. Crystallogr. 7(5), 802 (1962).

    Google Scholar 

  5. A. N. Nikitin, T. I. Ivankina, D. E. Burilichev, et al., Fiz. Zemli, No. 1, 64 (2001).

  6. A. N. Nikitin, T. I. Ivankina, and V. K. Ignatovich, Fiz. Zemli, No. 5, 57 (2009).

  7. V. K. Ignatovich and L. T. N. Phan, Acoustics of Inhomogeneous Media. Yearbook of the Russian Acoustic Society. Collected Papers of S.A. Rybak’s School (GEOS, Moscow, 2009), Issue 10, p. 26 [in Russian].

    Google Scholar 

  8. V. K. Ignatovich and L. T. N. Phan, Am. J. Phys. 77(12), 1162 (2009).

    Article  ADS  Google Scholar 

  9. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  10. A. N. Nikitin, R. N. Vasin, T. I. Ivankina, et al., Crystallogr. Rep. 4, 560 (2012).

    Article  ADS  Google Scholar 

  11. A. M. Balagurov, R. N. Vasin, T. Lokajicek, et al., Izv. TulGU Ser. Fiz., No. 6, 75 (2006).

  12. T. Lokajicek, P. Lukas, A. N. Nikitin, et al., Carbon 49(4), 1374 (2011).

    Article  Google Scholar 

  13. S. V. Panyukov and A. V. Subbotin, At. Energ. 105(1), 25 (2008).

    Google Scholar 

  14. I. G. Lebedev and Yu. S. Virgil’ev, At. Energ. 85(5), 377 (1998).

    Google Scholar 

  15. P. A. Platonov, V. Karpukhin, Ya. I. Shtrombakh, et al., Specialists’ Meeting on the Status of Graphite Development for Gas Cooled Reactors, Tokai, Ibaraki (Japan), 9–12 Sep 1991 (International Atomic Energy Agency, Vienna (Austria) IAEA-TECDOC-690), p. 205.

  16. A. L. Sutton and V. C. Howard, J. Nucl. Mater. 7(1), 58 (1962).

    Article  ADS  Google Scholar 

  17. R. Truell, Ch. Elbaum, and B. Chick, Ultrasonic Methods in Solid-State Physics (Academic Press, New York, 1969).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Elasticity Theory (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  19. W. Voight, Lehrbuch Der Kristallphysik (Teubner, Berlin, 1928).

    Google Scholar 

  20. A. Reuss, J. Appl. Mathem. Mechan. 9, 49 (1929).

    MATH  Google Scholar 

  21. Z. Hashin and S. Shtrikman, J. Mechan. Phys. Solids 335 (1962).

  22. T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  23. L. P. Khoroshun, Prikl. Mekh. 14(2), 3 (1978).

    MathSciNet  Google Scholar 

  24. H. J. Bunge, Texture Analysis in Material Science. Mathematical Methods (Butterworth, London, 1982).

    Google Scholar 

  25. S. Matthies, J. Appl. Crystallogr. 45, 1 (2012).

    Article  Google Scholar 

  26. Physical Encyclopedia, Vol. 3, Ed. by A. V. Prokhorov (Bol’shaya Rossiiskaya Entsiklopediya, Moscow, 1992) [in Russian].

    Google Scholar 

  27. T. Lokajicek and K. Klima, Meas. Sci. Technol. 17(9), 2461 (2006).

    Article  ADS  Google Scholar 

  28. K. Munro, CREWES Res. Rep. 16, 1 (2004).

    Google Scholar 

  29. O. H. Colak, T. C. Destici, S. Ozen, H. Arman, and O. Cerezci, Arab. J. Sci. Eng. A 34(1), 79 (2008).

    Google Scholar 

  30. M. S. Paterson and J. M. Edmond, Carbon 10(1), 29 (1972).

    Article  Google Scholar 

  31. A. Cichowicz, Bull. Seism. Soc. Am. 83, 180 (1993).

    Google Scholar 

  32. R. Sleeman and T. van Eck, Methods and Applications of Signal Processing in Seismic Network Operations. Lecture Notes in Earth Sciences (2003), V. 98, p. 173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Nikitin.

Additional information

Original Russian Text © A.N. Nikitin, R.N. Vasin, T.I. Ivankina, A.A. Kruglov, T. Lokajicek, L.T.N. Phan, 2012, published in Kristallografiya, 2012, Vol. 57, No. 5, pp. 762–773.

On the 100th anniversary of the discovery of X-ray diffraction

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, A.N., Vasin, R.N., Ivankina, T.I. et al. Investigation into the seismoacoustic properties of specific polycrystalline materials used in nuclear reactors. Crystallogr. Rep. 57, 682–692 (2012). https://doi.org/10.1134/S1063774512050100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774512050100

Keywords

Navigation