Advertisement

Astronomy Letters

, Volume 45, Issue 4, pp 197–207 | Cite as

The Relative Wavelength Independence of IR Time Lags in NGC 4151 during the Years 2010–2015

  • V. L. OknyanskyEmail author
  • V. I. Shenavrin
  • N. V. Metlova
  • C. M. Gaskell
Article

Abstract

We present results of a study of the correlation between the infrared (JHKL) and optical (B) fluxes of the nucleus of the Seyfert galaxy NGC 4151 for the years 2010–2015 using our own data (partially published) in combination with published data of Roberts and Rumstey (2012), Guo et al. (2014) and Schnülle et al. (2013, 2015). We find similar lags for each of the HKL passbands relative to the optical of 37 ± 3 days. The lags are the same to within the accuracy of measurement. We do not confirm a significant decrease in the lag for HKL in 2013–2014 previously reported by Schnülle et al. (2015), but we find that the lag of the short-lag component of J increased. We discuss our results within the framework of the standard model, where the variable infrared radiation is mainly due to the thermal re-emission of short-wave radiation by dust clouds close to a variable central source. There is also some contribution to the IR emission from the accretion disk, and this contribution increases with decreasing wavelength. The variability in J and K is not entirely simultaneous, which may be due to the differing contributions of the radiation from the accretion disk in these bands. The absence of strong wavelength-dependent changes in infrared lag across the HKL passbands can be explained by having the dust clouds during 2010–2015 be located beyond the sublimation radius. The relative wavelength independence of the infrared lags is also consistent with the hollow bi-conical outflow model of Oknyansky et al. (2015).

Keywords

NGC 4151 IR and optical variability cross-correlation analysis dusty torus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to S. Hönig for useful discussions, and also to D.-F. Guo for providing optical photometric data.

This work is devoted to the memory of Olga Taranova (1938–2017), our co-author in many studies of the IR variability of NGC4151 over the decades.

References

  1. 1.
    T. Almeyda, A. Robinson, M. Richmond, et al., Astrophys. J. 843, 3 (2017).CrossRefGoogle Scholar
  2. 2.
    R. R. J. Antonucci, Ann. Rev. Astron. Astrophys. 31, 473 (1993).CrossRefGoogle Scholar
  3. 3.
    R. Barvainis, Astrophys. J. 400, 502 (1992).CrossRefGoogle Scholar
  4. 4.
    J. J. Bock, G. Neugebauer, K. Matthews, et al., Astron. J. 120, 2904 (2000).CrossRefGoogle Scholar
  5. 5.
    J. A. Braatz, A. S. Wilson, D. Y. Gezari, et al., Astrophys. J. 409, L5 (1993).CrossRefGoogle Scholar
  6. 6.
    W. W. Cambell and J. H. Moore, Publ. Lick Obs. 13, 77 (1918).Google Scholar
  7. 7.
    M. Cameron, J. W.V. Storey, and V. Rotaciuc, Astrophys. J., 419, 136 (1993).CrossRefGoogle Scholar
  8. 8.
    A. M Cherepashchuk and V. M. Lyuty, Astrophys. Lett. 13, 165 (1973).Google Scholar
  9. 9.
    K. K. Chuvaev and V. L. Oknyanskii, Soviet. Astronomy 33, 1 (1989).Google Scholar
  10. 10.
    R. Edelson, J. Gelbord, E. Cackett, et al., Astrophys. J. 840, 41 (2017).CrossRefGoogle Scholar
  11. 11.
    D.-F. Guo, Sh.-M. Hu. J. Tao, et al., Res. in Astron. Astrophys. 14, 923 (2014).CrossRefGoogle Scholar
  12. 12.
    W. S. Fitch, A. G. Pacholczyk, and R. J. Weymann, Astrophys. J. 150, L67 (1967).CrossRefGoogle Scholar
  13. 13.
    C. M. Gaskell and P. Z. Harrington, Mon. Not. R. Astron. Soc. 478, 1660 (2018).CrossRefGoogle Scholar
  14. 14.
    C. M. Gaskell and B. M. Peterson, Astrophys. J. Suppl. Ser. 65, 1 (1987).CrossRefGoogle Scholar
  15. 15.
    C. M. Gaskell and L. S. Sparke, Astrophys. J. 305, 175 (1986).CrossRefGoogle Scholar
  16. 16.
    S. F. Hönig, Astrophys. J. Lett. 784, L4 (2014).CrossRefGoogle Scholar
  17. 17.
    S. F. Hönig and M. Kishimoto, Astron. Astrophys. 524, A121 (2011).CrossRefGoogle Scholar
  18. 18.
    S. F. Hönig and M. Kishimoto, Astrophys. J. 838, L20 (2017).CrossRefGoogle Scholar
  19. 19.
    S. F. Hönig, M. Kishimoto, R. Antonucci, et al., Astrophys. J 755, 149 (2012).CrossRefGoogle Scholar
  20. 20.
    S. F. Hönig, D. Watson, M. Kishimoto, and J. Hjorth, Nature 515, 528 (2014).CrossRefGoogle Scholar
  21. 21.
    W. C. Keel, Astron. J. 85, 198 (1980).CrossRefGoogle Scholar
  22. 22.
    E. Y. Khachikyan and D. W. Weedman, Astrophysics 7, 231 (1971).CrossRefGoogle Scholar
  23. 23.
    Y. Kobayashi, Y. Yoshii, B. A. Peterson, et al., Proc. SPIE 3352, 120 (1998).CrossRefGoogle Scholar
  24. 24.
    S. Koshida, Y. Yoshii, Y. Kobayashi, et al., Astropys. J. 700, L109 (2009).CrossRefGoogle Scholar
  25. 25.
    S. Koshida, Y. Yoshii, Y. Kobayashi, et al., Astrophys. J. Letters 842, L13 (2017).CrossRefGoogle Scholar
  26. 26.
    M. Kishimoto, S. F. Hönig, R. Antonucci, et al., Astrophys. J. 775, L36 (2013).CrossRefGoogle Scholar
  27. 27.
    J. H. Leftley, T. R. Tristam, S. F. Hönig, et al., Astrophys. J. 862, L17 (2018).CrossRefGoogle Scholar
  28. 28.
    N. López-Gonzaga, L. Burtscher, K. R.W. Tristram, et al., Astron. Astrophys 591, L47 (2016).CrossRefGoogle Scholar
  29. 29.
    V. M. Lyuty and V. T. Doroshenko, Letters to the Astron. Zhurnal. 25, 403 (1999).Google Scholar
  30. 30.
    V. M. Lyutyj, V. L. Oknyaskij, and K. K. Chuvaev, Soviet Astronomy Letters 10, 335 (1984).Google Scholar
  31. 31.
    M. Nenkova, M. M. Sirocky, R. Nikutta, et al., Astrophys. J. 685, 147 (2008a).CrossRefGoogle Scholar
  32. 32.
    M. Nenkova, Siroc M. Nenkova, M. M. Sirocky, Z. Ivezi, et al., Astrophys. J 685, 160 (2008b).CrossRefGoogle Scholar
  33. 33.
    V. L. Oknyanskii, Astron. Lett. 19, 416 (1993).Google Scholar
  34. 34.
    V. L. Oknyanskii, V. M. Lyutyi, and K. K. Chuvaev, Soviet Astronomy Letters 17, 100 (1991).Google Scholar
  35. 35.
    V. L. Oknyanskii, V. M. Lyuty, O. G. Taranova, and V. I. Shenavrin, Astronomy Letters 25, 483 (1999).Google Scholar
  36. 36.
    V. L. Oknyanskij, Variable stars 21, 71 (1978).Google Scholar
  37. 37.
    V. L. Oknyanskij, Astron. Tsirkulyar 1300, 1 (1983).Google Scholar
  38. 38.
    V. L. Oknyanskij, Odessa Astron. Publ. 12, 990 (1999).Google Scholar
  39. 39.
    V. L. Oknyanskij, ASP Conf. Proc. 282, 330 (2002).Google Scholar
  40. 40.
    V. L. Oknyanskij and K. Horne, ASP Conference Proceedings 224, 149 (2001).Google Scholar
  41. 41.
    V. L. Oknyanskij and V. M. Lyuty, Odessa Astron. Publ. 20, 160 (2007).Google Scholar
  42. 42.
    V. L. Oknyanskij, V. M. Lyuty, O. G. Taranova, and V. I. Shenavrin, ASP Conf. Ser. 360, 75 (2006).Google Scholar
  43. 43.
    V. L. Oknyasnkij, V. M. Lyuty, O. G. Taranova, et al., Odessa Astron. Publ. 21, 79 (2008).Google Scholar
  44. 44.
    V. Oknyanskij, N. Metlova, B. Artamonov, et al., Odessa Astron. Publ. 24, 65 (2012).Google Scholar
  45. 45.
    V. L. Oknyanskij, N. V. Metlova, N. A. Huseynov, et al., Odessa Astron. Publ. 29, 95 (2016).CrossRefGoogle Scholar
  46. 46.
    V. L. Oknyansky, N. V. Metlova, O. G. Taranova, et al., Astronomy Letters 40, 527 (2014a).CrossRefGoogle Scholar
  47. 47.
    V. L. Oknyansky, N. V. Metlova, O. G. Taranova, et al., Odessa Astron. Publ. 27, 47 (2014b).Google Scholar
  48. 48.
    V. L. Oknyansky, C. M. Gaskell, and E. V. Shimanovskaya, Odessa Astron. Publ. 28, 175 (2015).CrossRefGoogle Scholar
  49. 49.
    V. L. Oknyansky, C. M. Gaskell, N. A. Huseynov, et al., Mon. Not. R. Astron. Soc. 467, 1496 (2017).Google Scholar
  50. 50.
    A. G. Pacholczyk, Astrophys. J. 163, 149 (1971).CrossRefGoogle Scholar
  51. 51.
    M. V. Penston and E. Perez, Mon. Not. R. Astron. Soc. 211, 33 (1984).CrossRefGoogle Scholar
  52. 52.
    M. V. Penston, M. J. Penston, R. A. Selmes, et al., Mon. Not. R. Astron. Soc. 153, 29 (1971).CrossRefGoogle Scholar
  53. 53.
    C. A. Roberts and K. R. Rumstey, Journal of the Southeastern Association for Research in Astronomy 6, 47 (2012).Google Scholar
  54. 54.
    F. Pozo Nuñez, M. Haas, R. Chini, et al., Astron. Astrophys. 561L, 8P (2014).CrossRefGoogle Scholar
  55. 55.
    K. Seyfert, Astrophys. J. 97, 28 (1943).CrossRefGoogle Scholar
  56. 56.
    O. G. Taranova and V. I. Shenavrin, Astron. Rep. 90, 71 (2013).CrossRefGoogle Scholar
  57. 57.
    B. J. Shappee, J. L. Prieto, D. Grupe, et al., Astrophys. J. 788, 48 (2014).CrossRefGoogle Scholar
  58. 58.
    K. Schnülle, J.-U. Pott, H.-W. Rix, et al., Astron. Astrophys. 557, L13 (2013).CrossRefGoogle Scholar
  59. 59.
    K. Schnülle, J.-U. Pott, H.-W. Rix, et al., Astron. Astrophys. 578, 57 (2015).CrossRefGoogle Scholar
  60. 60.
    B. Vazquez, Constraining the size of the dusty torus in Active Galactic Nuclei: An Optical/Infrared Reverberation Lag Study (Ph.D. thesis), Rochester Institute of Technology, 2015), p. 199.Google Scholar
  61. 61.
    B. Vazquez, P. Galianni, M. Richmond, et al., Astrophys. J. 801, 127 (2015).CrossRefGoogle Scholar
  62. 62.
    G. de Vaucouleurs and A. G. de Vaucouleurs, Publications University of Texas, Series II 7, 1 (1968).Google Scholar
  63. 63.
    Y. Yoshii, Y. Kobayashi, T. Minezaki, et al., Astrophys. J. Lett. 784, L11 (2014).CrossRefGoogle Scholar
  64. 64.
    Y. Zu. C. S. Kochanek and B. M. Peterson, Astrophys. J. 735, 80 (2011).CrossRefGoogle Scholar
  65. 65.
    Y. Zu. S. S. Kochanek, S. Kozlowski, et al., Astrophys. J. 765, 106 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • V. L. Oknyansky
    • 1
    Email author
  • V. I. Shenavrin
    • 1
  • N. V. Metlova
    • 1
  • C. M. Gaskell
    • 2
  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Department of Astronomy and AstrophysicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations