Advertisement

Astronomy Letters

, Volume 45, Issue 4, pp 237–247 | Cite as

An Analytical Model for the Propagation of Thermal Runaway Electrons in Solar Flares

  • P. A. GritsykEmail author
  • B. V. SomovEmail author
Article
  • 5 Downloads

Abstract

The nature of the hard X-ray emission from solar flares is well known. The observed emission in both the corona and the chromosphere consists of two components: nonthermal and thermal. The non-thermal and thermal components are attributable to the bremsstrahlung of accelerated electrons and heated plasma electrons, respectively. Since the nonthermal and thermal hard X-ray emission spectra partially overlap, their proper interpretation directly depends on the accuracy of the kinetic models describing the propagation of thermal and nonthermal runaway electrons in the solar atmosphere. The evolution of the distribution function for the latter, i.e., the electrons accelerated in the magnetic reconnection region, is accurately described in the approximation of present-day thick-target models with a reverse current. Here we consider a model for the thermal runaway of electrons and find an analytical solution of the corresponding kinetic equation in which the Coulomb collisions are taken into account. The degree of polarization of the emission has been estimated to be no greater than ∼5%. The derived distribution function can also be used to calculate the thermal X-ray emission spectrum and, as a consequence, to interpret the observations of the thermal component in the X-ray spectrum of a solar flare.

Keywords

Sun magnetic fields solar flares thermal electrons bremsstrahlung polarization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Aschwanden, Particle Acceleration and Kinematics in Solar Flares (Kluwer Academic, Dordrecht, 2002).CrossRefGoogle Scholar
  2. 2.
    S. A. Bogachev and B. V. Somov, Astron. Lett. 31, 537 (2005).CrossRefGoogle Scholar
  3. 3.
    S. A. Bogachev and B. V. Somov, Astron. Lett. 33, 54 (2007).CrossRefGoogle Scholar
  4. 4.
    S.V. Diakonov and B. V. Somov, Solar Phys. 116, 119 (1988).CrossRefGoogle Scholar
  5. 5.
    G. Elwert and E. Haug, Solar Phys. 15, 234 (1970).CrossRefGoogle Scholar
  6. 6.
    A. G. Emslie, B. R. Dennis, R. P. Lin, and H. Hudson, High-Energy Aspects of Solar Flares (Springer, New York, 2012), p. 478.CrossRefGoogle Scholar
  7. 7.
    R. G. Giovanelli, Mon. Not. R. Astron. Soc. 108, 163 (1948).CrossRefGoogle Scholar
  8. 8.
    B. W. Grefenstette et al., Astrophys. J. 826, 20 (2016).CrossRefGoogle Scholar
  9. 9.
    P. A. Gritsyk and B. V. Somov, Astron. Lett. 40, 499 (2014).CrossRefGoogle Scholar
  10. 10.
    P. A. Gritsyk and B. V. Somov, Astron. Lett. 42, 531 (2016).CrossRefGoogle Scholar
  11. 11.
    P. A. Gritsyk and B. V. Somov, Astron. Lett. 43, 614 (2017).CrossRefGoogle Scholar
  12. 12.
    A. V. Gurevich and Ya. N. Istomin, Sov. Phys. JETP 50, 470 (1979).Google Scholar
  13. 13.
    H. Hudson and J. Ryan, Astrophys. J. 33, 239 (1995).Google Scholar
  14. 14.
    S. Krucker, M. Battaglia, P. J. Cargill, et al., Astron. Astrophys. Rev. 16, 155 (2008).CrossRefGoogle Scholar
  15. 15.
    Yu. E. Litvinenko and B. V. Somov, Solar Phys. 131, 319 (1991).CrossRefGoogle Scholar
  16. 16.
    L. I. Miroshnichenko, Solar Cosmic Rays, Fundamentals and Applications, 2nd ed. (Springer, Heidelberg, 2015).Google Scholar
  17. 17.
    L. Nocera, Yu. I. Skrynnikov, and B. V. Somov, Solar Phys. 97, 81 (1985).CrossRefGoogle Scholar
  18. 18.
    E. N. Parker, J. Geophys. Res. 62, 509 (1957).CrossRefGoogle Scholar
  19. 19.
    E. R. Priest and T. Forbes, Magnetic Reconnection: MHD Theory and Applications (Cambridge Univ. Press, Cambridge, UK, 2000).CrossRefzbMATHGoogle Scholar
  20. 20.
    J.-I. Sakai and C. de Jager, Cosmic Plasma Physics (Kluwer Academic, Dordrecht, 1996).Google Scholar
  21. 21.
    B. V. Somov, Izv. Akad. Nauk SSSR, Ser. Fiz. 45, 576 (1981).Google Scholar
  22. 22.
    B. V. Somov, Physical Processes in Solar Flares (Dordrecht, London, 1992).Google Scholar
  23. 23.
    B. V. Somov, Cosmic Plasma Physics (Kluwer Academic, Dordrecht, 2000).CrossRefGoogle Scholar
  24. 24.
    B. V. Somov, Plasma Astrophysics. Part I: Fundamentals and Practice (Springer, New York, 2012).CrossRefzbMATHGoogle Scholar
  25. 25.
    B. V. Somov, Plasma Astrophysics, Part II: Reconnection and Flares (Springer, New York, 2013).CrossRefzbMATHGoogle Scholar
  26. 26.
    B. V. Somov and S. A. Bogachev, Astron. Lett. 29, 621 (2003).CrossRefGoogle Scholar
  27. 27.
    B. V. Somov and T. Kosugi, Astrophys. J. 485, 859 (1997).CrossRefGoogle Scholar
  28. 28.
    P. A. Sweet, Nuovo Cimento Suppl., Ser. 10 8, 188 (1958).CrossRefGoogle Scholar
  29. 29.
    P. A. Sweet, Ann. Rev. Astron. Astrophys. 7, 149 (1969).CrossRefGoogle Scholar
  30. 30.
    S. I. Syrovatskii, Sov. Astron. 6, 768 (1962).Google Scholar
  31. 31.
    S. I. Syrovatskii, Sov. Astron. 10, 270 (1966).Google Scholar
  32. 32.
    S. I. Syrovatskii and O. P. Shmeleva, Sov. Astron. 16, 273 (1972).Google Scholar
  33. 33.
    V. S. Vladimirov, Equations of Mathematical Physics (Nauka, Moscow, 1981; Mir, Moscow, 1984).Google Scholar
  34. 34.
    J. P. Wild, Proc. IAU Symp. 6, 115 (1963).Google Scholar
  35. 35.
    V. V. Zharkova, K. Arzner, A. O. Benz, P. Browning, C. Dauphin, A. G. Emslie, L. Fletcher, E. P. Kontar, et al., Space Sci. Rev. 159, 357 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia

Personalised recommendations