Astronomy Letters

, Volume 44, Issue 12, pp 777–781 | Cite as

Single X-ray Bursts and the Model of a Spreading Layer of Accreting Matter over the Neutron Star Surface

  • S. A. GrebenevEmail author
  • I. V. Chelovekov


The excess of the rate of type I X-ray bursts over that expected when the matter fallen between bursts completely burns out in a thermonuclear explosion which is observed in bursters with a high persistent luminosity (4 × 1036LX ≲ 2 × 1037 erg s−1) is explained in terms of the model of a spreading layer of matter coming from the accretion disk over the neutron star surface. In this model the accreting matter settles to the stellar surface mainly in two high-latitude ring zones. Despite the subsequent spreading of matter over the entire star, its surface density in these zones turns out to be higher than the average one by 2–3 orders of magnitude, which determines the predominant ignition probability. The multiple events whereby the flame after the thermonuclear explosion in one ring zone (initial burst) propagates through less densematter to another zone and initiates a second explosion in it (recurrent burst) make a certain contribution to the observed excess of the burst rate. However, the localized explosions of matter in these zones, after which the burning in the zone rapidly dies out without affecting other zones, make a noticeably larger contribution to the excess of the burst rate over the expected one.


X-ray bursters neutron stars X-ray bursts thermonuclear explosion accretion spreading layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bildsten, Astrophys. J. 438, 852 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    L. Bildsten, in Proceedings of International Conference on theMany Faces of Neutron Stars, Ed. by A. Alpar, L. Buccheri, and J. van Paradijs, ASIC 515, 419 (1998).CrossRefGoogle Scholar
  3. 3.
    L. Bildsten, in Proceedings of 10th International Astrophysics Conference on Cosmic Explosions, AIP Conf. 522, 359 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    I. V. Chelovekov and S. A. Grebenev Astron. Lett. 37, 597 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    I. V. Chelovekov, S. A. Grebenev, and R. A. Sunyaev, Astron. Lett. 32, 456 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Chelovekov, S. A. Grebenev, I. A. Mereminskiy, and A. V. Prosvetov, Astron. Lett. 43, 781 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    R. L. Cooper and R. Narayan, Astrophys. J. 657, L29 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    A. Cumming and L. Bildsten, Astrophys. J. 559, L127 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    E. Ergma, Sov. Sci. Rev., Sec. E: Astrophys. Space Phys. Rev. 2, 163 (1983).ADSGoogle Scholar
  10. 10.
    E. V. Ergma and A. V. Tutukov, Astron. Astrophys. 84, 123 (1980).ADSGoogle Scholar
  11. 11.
    B. A. Fryxell and S. E. Woosley, Astrophys. J. 261, 332 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    M. Y. Fuijmoto, T. Hanawa, and S. Miyaji, Astrophys. J. 246, 267 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    D. K. Galloway, M. P. Muno, J. M. Hartman, D. Psaltis, and D. Chakrabarty, Astrophys. J. Suppl. Ser. 179, 360 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. Grebenev, I. V. Chelovekov, Astron. Lett. 43, 583 (2017)].ADSCrossRefGoogle Scholar
  15. 15.
    T. Hanawa and M. Y. Fujimoto, Publ. Astron. Soc. Jpn. 34, 495 (1982).ADSGoogle Scholar
  16. 16.
    N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 25, 269 (1999).ADSGoogle Scholar
  17. 17.
    N. A. Inogamov and R. A. Sunyaev, Astron. Lett. 36, 848 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    J. J. M. in’t Zand, R. Cornelisse, and A. Cumming, Astron. Astrophys. 426, 257 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    L. Keek, D. K. Galloway, J. J. M. in’t Zand, and A. Heger, Astrophys. J. 718, 292 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    W. H. G. Lewin, J. van Paradijs, and R. E. Taam, Space Sci. Rev. 62, 223 (1993).ADSCrossRefGoogle Scholar
  21. 21.
    T. Nozakura, S. Ikeuchi, and M. Y. Fujimoto, Astrophys. J. 286, 221 (1984).ADSCrossRefGoogle Scholar
  22. 22.
    A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astrophys. J. 566, 1018 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    T. Strohmayer and L. Bildsten, Compact Stellar X-ray Sources, Vol. 39 of Cambridge Astrophysics Series, Ed. by W. Lewin and M. van der Klis (Cambridge Univ. Press, Cambridge, 2006), p. 113; astroph/0301544.Google Scholar
  24. 24.
    A. V. Tutukov and E. V. Ergma, Sov. Astron. Lett. 5, 20 (1979).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Space Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations