Advertisement

Astronomy Reports

, Volume 63, Issue 11, pp 910–919 | Cite as

Polarization Properties of Weakly Relativistic Cylindrical Jets

  • S. V. ChernovEmail author
Article

Abstract

Jets can be not only ultrarelativistic, but also relativistic but with velocities appreciably lower than the speed of light. They can be launched not only by supermassive black holes in active galactic nuclei, but also by young, rapidly rotating stars (Herbig-Haro objects) and microquasars, which are binary systems displaying supercritical accretion onto a black hole (e.g., the SS 433 system) [1]. It is believed that the mechanisms for the launching of jets in these systems are related. The polarization properties of weakly relativistic cylindrical jets in an inhomogeneous magnetic field are studied in the geometrical optics approximation for the cases of isotropic and anisotropic distribution functions for the radiating particles. Various configurations for a helical magnetic field satisfying the force-free approximation are considered. In addition, the PLUTO code is used to model a jet with an inhomogeneous magnetic field. The intensity, spectrum, and polarization of gyrosynchrotron radiation of the jets are computed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This work was supported by the Russian Foundation for Basic Research (grants 19-02-00199-a, 17-02-00788-a, 17-52-45053-IND-a).

References

  1. 1.
    V. S. Beskin, Axisymmetric Stationary Flows in Astrophysics (Fizmatlit, Moscow, 2005) [in Russian].Google Scholar
  2. 2.
    V. V. Zheleznyakov, Emission in Astrophysical Plasma (Yanus-K, Moscow, 1997) [in Russian].Google Scholar
  3. 3.
    G. D. Fleishman and V. F. Melnikov, Astrophys. J. 584, 1071 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    G. D. Fleishman and V. F. Melnikov, Astrophys. J. 587, 823 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    G. D. Fleishman and V. F. Mel’nikov, Phys. Usp. 41, 1157 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    V. V. Zheleznyakov and S. A. Koryagin, Astron. Lett. 28, 727 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Zheleznyakov and S. A. Koryagin, Astron. Lett. 31, 713 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    O. Porth, C. Fendt, Z. Meliani, and B. Vaidya, Astrophys. J. 737, 42 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Pariev, Ya. N. Istomin, and A. R. Beresnyak, Astron. Astrophys. 403, 805 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    M. Lyutikov, V. I. Pariev, and R. D. Blandford, Astrophys. J. 597, 998 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    M. Lyutikov, V. I. Pariev, and D. C. Gabuzda, Mon. Not. R. Astron. Soc. 360, 869 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Chernoglazov, V. S. Beskin, and V. I. Pariev, Mon. Not. R. Astron. Soc. (in press).Google Scholar
  13. 13.
    V. Ya. Eidman, Sov. Phys. JETP 7, 91 (1958).Google Scholar
  14. 14.
    V. Ya. Eidman, Sov. Phys. JETP 9, 947 (1959).MathSciNetGoogle Scholar
  15. 15.
    H. B. Liemohn, Radio Sci. 69D, 741 (1965).Google Scholar
  16. 16.
    R. Ramaty, Astrophys. J. 158, 753 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    V. Petrosian, Astrophys. J. 251, 727 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    K.-L. Klein, Astron. Astrophys. 183, 341 (1987).ADSGoogle Scholar
  19. 19.
    Ya. N. Istomin and V. I. Pariev, Mon. Not. R. Astron. Soc. 267, 629 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    Ya. N. Istomin and V. I. Pariev, Mon. Not. R. Astron. Soc. 281, 1 (1996).ADSCrossRefGoogle Scholar
  21. 21.
    R. Narayan and A. Tchekhovskoy, Astrophys. J. 697, 1681 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari, Astrophys. J. Suppl. 170, 228 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Nauka, Moscow, 1960; Addison Wesley, London, 1970).Google Scholar
  24. 24.
    V. V. Zheleznyakov, Astrophys. Space Sci. 2, 417 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    P. K. Leung, C. F. Gammie, and S. C. Noble, Astrophys. J. 737, 21 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    M. Lyutikov, V. I. Pariev, and D. C. Gabuzda, arXiv:astro-ph/0406144.Google Scholar
  27. 27.
    A. Mignone, M. Ugliano, and G. Bodo, Mon. Not. R. Astron. Soc. 393, 1141 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    R. Quyed and R. Pudritz, Astrophys. J. 482, 712 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar
  30. 30.
    V. L. Ginzburg, V. N. Sazonov, and S. I. Syrovatskii, Sov. Phys. Usp. 11, 34 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Astro Space Center, P.N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations