Advertisement

Astronomy Reports

, Volume 63, Issue 4, pp 274–288 | Cite as

The Chemical Composition of Globular Clusters of Different Nature in Our Galaxy

  • V. A. MarsakovEmail author
  • V. V. Koval’Email author
  • M. L. GozhaEmail author
Article

Abstract

A catalog of Galactic globular clusters has been compiled and used to analyze relations between the chemical and kinematic parameters of the clusters. The catalog contains positions, distances, luminosities, metallicites, and horizontal-branch morphology indices for 157 globular clusters, as well as space velocities for 72 globular clusters. For 69 globular clusters, these data are suppleented with the relative abundances of 28 chemical elements produced in various nuclear-synthesis processes, taken from 101 papers published between 1986 and 2018. The tendency for redder horizontal branches in lowmetallicity accreted globular clusters is discussed. The discrepancy between the criteria for cluster membership in the thick-disk and halo subsystems based on chemical and kinematic properties is considered. This is manifest through the fact that all metal-rich ([Fe/H] > −1.0) clusters are located close to the center and plane of the Galaxy, regardless of their kinematic membership in particular Galaxy subsystems. An exception is three accreted clusters lost by a dwarf galaxy in Sagittarius. At the same time, the fraction of more distant clusters is high among metal-poorer clusters in any kinematically selected Galactic subsystem. In addition, all metal-rich clusters whose origins are related to the same protogalactic cloud are located in the [Fe/H]–[α/Fe] diagram considerably higher than the strip populated with field stars. All metal-poor clusters (most of them accreted) populate the entire width of the strip formed by high-velocity (i.e., presumably accreted) field stars. Stars of dwarf satellite galaxies (all of them being metal-poor) are located in this diagram much lower than accreted field stars. These facts suggest that all stellar objects in the accreted halo are remnants of galaxies with higher masses than those in the current environment of the Galaxy. Differences in the relative abundances of α-process elements among stellar objects of the Galaxy and surrounding dwarf satellite galaxies confirmthat the latter have left no appreciable stellar traces in the Galaxy, with the possible exception of the low-metallicity cluster Rup 106, which has low relative abundances of α-process elements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11444_2019_17_MOESM1_ESM.xlsx (13 kb)
Supplementary material, approximately 14 KB.
11444_2019_17_MOESM2_ESM.xlsx (51 kb)
Supplementary material, approximately 52 KB.
11444_2019_17_MOESM3_ESM.xlsx (28 kb)
Supplementary material, approximately 29 KB.
11444_2019_17_MOESM4_ESM.doc (67 kb)
The chemical composition of globular clusters of different nature in our Galaxy

References

  1. 1.
    M. G. Abadi, J. F. Navarro, and M. Steinmetz, Mon. Not. R. Astron. Soc. 365, 747 (2006).ADSCrossRefGoogle Scholar
  2. 2.
    R. Ibata, G. Gilmore, and M. Irvin, Nature 370, 194 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    M. Mateo, ASP Conf. Ser. 92, 434 (1996).ADSGoogle Scholar
  4. 4.
    D. R. Law and S. R. Majewski, Astrophys. J. 718, 1128 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    C. Palma, S. R. Majewski, and K. V. Johnston, Astrophys. J. 564, 736 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    M. Bellazzini, F. R. Ferraro, and R. Ibata, Astron. J. 125, 188 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    B. Tang, J. G. Fernández–Trincado, D. Geisler, O. Zamora, et al., Astrophys. J. 855, 38 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    R. B. Larson, ASP Conf. Ser. 92, 241 (1996).ADSGoogle Scholar
  9. 9.
    D. Massari, L. Posti, A. Helmi, G. Fiorentino, and E. Tolstoy, Astron. Astrophys. 598, L9 (2017).Google Scholar
  10. 10.
    D. Dinescu, S. R. Majewski, T. M. Girard, and K. M. Cudworth, Astron. J. 120, 1892 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    D. Dinescu, S. R. Majewski, T. M. Girard, and K. M. Cudworth, Astron. J. 122, 1916 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    D. A. Forbes and T. Bridges, Mon. Not. R. Astron. Soc. 404, 1203 (2010).ADSGoogle Scholar
  13. 13.
    K. Freeman, in IAU Symposium 153: Galactic Bulges, Ed. by H. Dejonghe and H. J. Hobiug (Kluwer Academic, Dordrecht, 1993), p. 263.Google Scholar
  14. 14.
    T. Tshuchiya, D. Dinescu, and V. I. Korchagin, Astrophys. J. 589, L29 (2003).Google Scholar
  15. 15.
    D. Carollo, T. C. Beers, Y. S. Lee, M. Chiba, et al., Nature 450, 1020 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    G. S. Da Costa and T. E. Armandroff, Astron. J. 109, 253 (1995).CrossRefGoogle Scholar
  17. 17.
    R. Zinn, ASP Conf. Ser. 48, 38 (1993).ADSGoogle Scholar
  18. 18.
    T. V. Borkova and V. A. Marsakov, Astron. Rep. 44, 665 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    V. A. Marsakov and A. A. Suchkov, Sov. Astron. 21, 700 (1977).ADSGoogle Scholar
  20. 20.
    V. V. Bobylev and A. T. Bajkova, Astron. Rep. 61, 551 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    E. Carretta, Proc. IAU Symp. 317, 97 (2016).ADSGoogle Scholar
  22. 22.
    J. Pritzl, K. A. Venn, and M. Irwin, Astron. J. 130, 2140 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    W. E. Harris, Astron. J. 112, 1487 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    M. Eadie and W. E. Harris, Astrophys. J. 829, 108 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    R. Schonrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    K. A. Venn, M. Irwin, M. D. Shetrone, C. A. Tout, V. Hill, and E. Tolstoy, Astron. J. 128, 1177 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    T.Bensby, S. Feltzing, and M. S. Oey, Astron.Astrophys. 562, A71 (2014).Google Scholar
  28. 28.
    E. Moreno, B. Pichardo, and H. Velázquez, Astrophys. J. 793, 110 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    D. A. van den Berg, Astrophys. J. Suppl. 129, 315 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    M. Salaris and A. Weiss, Astron. Astrophys. 388, 492 (2002).ADSCrossRefGoogle Scholar
  31. 31.
    T. Bensby, S. Feldzing, and I. Lungstrem, Astron. Astrophys. 410, 527 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    C. Allen and A. Santillan, Rev. Mex. Astron. Astrofis. 25, 39 (1993).ADSGoogle Scholar
  33. 33.
    O. J. Eggen, D. Linden–Bell, and A. Sandage, Astrophys. J. 136, 748 (1962).ADSCrossRefGoogle Scholar
  34. 34.
    Y.–W. Lee, H. B. Gim, and D. I. Casetti–Dinescu, Astrophys. J. 661, L49 (2007).Google Scholar
  35. 35.
    R. G. Gratton, E. Carretta, and A. Bragaglia, Astron. Astrophys. Rev. 20, 50 (2012).ADSCrossRefGoogle Scholar
  36. 36.
    P. Ventura and F. D’Antona, Astron. Astrophys. 499, 835 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    T. Decressin, G. Meynet, C. Charbonnel, N. Prantzos, and S. Ekström, Astron. Astrophys. 464, 1029 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    S. Jang, Y.–W. Lee, S.–J. Joo, and C. Na, Mon. Not. R. Astron. Soc. 443, L15 (2014).Google Scholar
  39. 39.
    T. V. Borkova and V. A. Marsakov, Bull. SAO 54, 61 (2002).Google Scholar
  40. 40.
    Y.–W. Lee, P. Demarque, and R. Zinn, Astrophys. J. 423, 248 (1994).ADSCrossRefGoogle Scholar
  41. 41.
    V. A. Marsakov and T. V. Borkova, Astron. Lett. 32, 545 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    M. Shetrone, P. Cote, and W. L. W. Sargent, Astrophys. J. 548, 592 (2001).ADSCrossRefGoogle Scholar
  43. 43.
    M. Shetrone, K. A. Venn, E. Tolstoy, F. Primas, V. Hill, and A. Kaufer, Astron. J. 125, 684 (2003).ADSCrossRefGoogle Scholar
  44. 44.
    D. Geisler, V. V. Smith, G. Wallerstein, G. Gonzalez, and C. Charbonnel, Astron. J. 129, 1428 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    P. E. Nissen and W. J. Schuster, Astron. Astrophys. 511, L10 (2010).Google Scholar
  46. 46.
    A. Mucciarelli, M. Bellazzini, R. Ibata, D. Romano, S. C. Chapman, and L. Monaco, Astron. Astrophys. 605, A46 (2017).Google Scholar
  47. 47.
    S. L. J. Gibbons, V. Belokurov, and N. W. Evans, Mon. Not. R. Astron. Soc. 464, 794 (2017).ADSCrossRefGoogle Scholar
  48. 48.
    V. Marsakov, T. Borkova, and V. Koval’, in Variable Stars, the Galactic Halo andGalaxy Formation, Ed. by C. Sterken, N. Samus, and L. Szabodos (Moscow Univ. Press,Moscow, 2010), p. 133.Google Scholar
  49. 49.
    M. G. Abadi, J. F. Navarro, M. Steinmetzand, and V. R. Eke, Astrophys. J. 591, 499 (2003).ADSCrossRefGoogle Scholar
  50. 50.
    A. Meza, J. F. Navarro, M. G. Abadi, and M. Steinmetz, Mon. Not. R. Astron. Soc. 359, 93 (2005).ADSCrossRefGoogle Scholar
  51. 51.
    T. V. Borkova and V. A. Marsakov, Astron. Rep. 49, 405 (2005).ADSCrossRefGoogle Scholar
  52. 52.
    V. A. Marsakov, M. L. Gozha, and V. V. Koval, Astron. Rep. 62, 50 (2018).ADSCrossRefGoogle Scholar
  53. 53.
    V. Belokurov, D. Erkal, N. W. Evans, S. E. Koposov, and A. J. Deason, Mon. Not. R. Astron. Soc. 478, 611 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations