Advertisement

Astronomy Reports

, Volume 63, Issue 1, pp 25–38 | Cite as

A Possible Mechanism for the Radio Emission of Polars

  • E. P. KurbatovEmail author
  • A. G. ZhilkinEmail author
  • D. V. BisikaloEmail author
Article
  • 16 Downloads

Abstract

A means of generating the radio emission of polars is proposed, based on cyclotron radiation of thermal electrons in a fluctuating magnetic field. The source of these fluctuations is Alfvén turbulence. Expressions for the radiation spectrum and degree of polarization are obtained. The radio flux from the accretion flow is computed, using the polar AM Her as an example. The proposed model for the emission can reproduce the observed fluxes in the VLA frequency range with realistic plasma characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Mason and C. L. Gray, Astrophys. J. 660, 662 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    D. L. Coppejans, E. G. Kųrding, J. C. A. Miller-Jones, M. P. Rupen, C. Knigge, G. R. Sivakoff, and P. J. Groot, Mon. Not. R. Astron. Soc. 451, 3801 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, UK, 2003).Google Scholar
  4. 4.
    D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  5. 5.
    A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    G. Chanmugam and G. A. Dulk, Astrophys. J. 255, L107 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    G. A. Dulk, T. S. Bastian, and G. Chanmugam, Astrophys. J. 273, 249 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    A. O. Benz and M. Guedel, Astron. Astrophys. 218, 137 (1989).ADSGoogle Scholar
  9. 9.
    E. P. Kurbatov, A. G. Zhilkin, and D. V. Bisikalo, Phys. Usp. 60, 798 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    M. P. Gawroński, K. Goździewski, K. Katarzyński, and G. Rycyk, Mon. Not. R. Astron. Soc. 475, 1399 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    A. Yu. Sytov, P. V. Kaigorodov, D. V. Bisikalo, O. A. Kuznetsov, and A. A. Boyarchuk, Astron. Rep. 51, 836 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 840 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    P. B. Isakova, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 62, 492 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    G. J. Savonije, Astron. Astrophys. 62, 317 (1978).ADSGoogle Scholar
  15. 15.
    P. S. Iroshnikov, Sov. Astron. 7, 566 (1963).ADSMathSciNetGoogle Scholar
  16. 16.
    S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63, 447 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    S. Galtier, arXiv:1201.1370 (2012).Google Scholar
  18. 18.
    R. L. Dewar, Phys. Fluids 13, 2710 (1970).ADSCrossRefGoogle Scholar
  19. 19.
    A. E. Dudorov and S. N. Zamozdra, Vestn. ChelGU 25, 55 (2009).Google Scholar
  20. 20.
    G. Chanmugam, Astrophys. Space Sci. 130, 53 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    T. S. Bastian, G. A. Dulk, and G. Chanmugam, in Radio Stars, Ed. by R. M. Hjellming and D. M. Gibson (D. Reidel, Dordrecht, 1985), p. 225.Google Scholar
  22. 22.
    J. Frank, A. King, and D. J. Raine, Accretion Power in Astrophysics, 3rd ed. (Cambridge Univ. Press, Cambridge, UK, 2002).CrossRefGoogle Scholar
  23. 23.
    P. K. G. Williams, S. L. Casewell, C. R. Stark, S. P. Littlefair, C. Helling, and E. Berger, Astrophys. J. 815, 64 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    D. B. Melrose and G. A. Dulk, Astrophys. J. 259, 844 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1988; Pergamon, Oxford, 1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Russian Academy of SciencesMoscowRussia

Personalised recommendations