Astronomy Reports

, Volume 63, Issue 1, pp 15–24 | Cite as

Gamma-Ray Emission During the Accretion of Matter from a Supernova Envelope onto a Compact Remnant

  • A. A. FilinaEmail author
  • I.A. AnikinEmail author
  • A. A. BaranovEmail author
  • V. M. ChechetkinEmail author


The aim of this study is to investigate the accretion of matter onto a compact gravitating remnant (neutron star) in the central region of the expanding shell of a Type II supernova. Computations of an explosion with the energetics of a Type II supernova have been performed to derive the structure of matter in the vicinity of the neutron star. The energy of the expanding shell and the parameters of the presupernova correspond to the known values for SN 1987A. This accretion leads to the formation of a layer of fairly dense and hot gas at the surface of the compact remnant, providing the conditions for nucleosynthesis reactions. Thus, one result of the study is to demonstrate the importance of the r and rbc processes, or explosive nucleosynthesis, in the compact envelope of a neutron star. A second result is the production of emission lines from unstable elements formed in the central part of the neutron-star envelope.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Imshennik and D. K. Nadezhin, Usp. Fiz. Nauk 156, 561 (1988).CrossRefGoogle Scholar
  2. 2.
    V. M. Blanco, B. Gregory, M. Hamuy, S. R. Heathcote, et al., Astrophys. J. 320, 589 (1987).ADSCrossRefGoogle Scholar
  3. 3.
    J. W. Menzies, R. M. Catchpole, G. van Vuuren, H. Winkler, et al., Mon. Not. R. Astron. Soc. 227, 39 (1987).ADSCrossRefGoogle Scholar
  4. 4.
    T. Shigeyama, K. Nomoto, M. Hashimoto, and D. Sugimoto, Nature 328, 320 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    V. M. Chechetkin, S. S. Gershtein, V. S. Imshennik, L. N. Ivanova, and M. Iu. Khlopov, Astrophys. Space Sci. 67, 61 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    V. M. Chechetkin, A. A. Denisov, A. V. Koldoba, Yu. A. Poveschenko, and Yu. P. Popov, Proc. IAU Colloq. 101, 27 (1988).ADSGoogle Scholar
  7. 7.
    N. R. Walborn, B. M. Lasker, V. G. Laidler, and Y.-H. Chu, Astrophys. J. 321, L41 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    W. D. Arnett, J. N. Bahcall, R. P. Krishner, and S. E. Stanford, Ann. Rev. Astron. Astrophys. 27, 629 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, et al., Phys. Rev. Lett. 58, 1490 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    R. M. Bionta, G. Blewwit, C. B. Bratton, D. Casper, et al., Phys. Rev. Lett. 58, 1494 (1987).ADSCrossRefGoogle Scholar
  11. 11.
    M. Matsuura, E. Dwek, M. J. Barlow, B. Babler, et al., Astrophys. J. 800, 50 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    C. S. Kochanek, Mon.Not. R. Astron. Soc. 473, 1633 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    G. J. M. Graves, P. M. Challis, R. A. Chevalier, A. Crotts, et al., Astrophys. J. 629, 944 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Baranov and V. M. Chechetkin, Astron. Rep. 55, 525 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    G. S. Bisnovatyi-Kogan, Sov. Astron. 14, 652 (1970).ADSGoogle Scholar
  16. 16.
    I. V. Baikov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    A. Gawryszczak, J. Guzman, T. Plewa, and K. Kifonidis, Astron. Astrophys. 521, A38 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    K. Kjaer, B. Leibundgut, C. Fransson, A. Jerkstrand, and J. Spyromilio, Astron. Astrophys. 517, A51 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    H.-Th. Janka, F. Hanke, L. Hudepohl, A. Marek, B. Muller, and M. Obergaulinger, Prog. Theor. Exp. Phys. 2012, 01A309 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Wongwathanarat, E. Miller, and H.-Th. Janka, Astron. Astrophys. 577, A48 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    N. N. Kalitkin Numerical Methods (Nauka, Moscow, 1978) [in Russian].Google Scholar
  22. 22.
    M. V. Popov, A. A. Filina, A. A. Baranov, P. Chardonnet, and V. M. Chechetkin, Astrophys. J. 783, 43 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    S. E. Woosley, P. A. Pinto, and T. A. Weawer, Proc. Astron. Soc. Austral. 7, 355 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    M. Hashimoto, K. Nomoto, and T. Shigeyama, Astron. Astrophys. 196, 141 (1988).ADSGoogle Scholar
  25. 25.
    V. M. Chechetkin, Sov. Astron. 13, 153 (1969).ADSGoogle Scholar
  26. 26.
    V. M. Chechetkin, Sov. Astron. 13, 156 (1969).ADSGoogle Scholar
  27. 27.
    I. V. Panov, D. A. Ptitsyn, and V. M. Chechetkin, Astron. Lett. 21, 209 (1995).Google Scholar
  28. 28.
    B. S. Dzhelepov, and L. K. Peker, Decay Schemes of Radioactive Nuclei with A < 100 (Nauka, Moscow, 1966) [in Russian].Google Scholar
  29. 29.
    H. A. Kramers, Philos.Mag., J. Sci. 46, 836 (1923).CrossRefGoogle Scholar
  30. 30.
    D. Salehi, D. Sardari, and M. Salehi Jozani, Chin. Phys. 37, 078201 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory (Nauka, Moscow, 1979; Pergamon, Oxford, 1971).Google Scholar
  32. 32.
    G. S. Bisnovatyi-Kogan, Physical Problems in the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsMoscowRussia
  2. 2.Institute of Automation and DesignRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Engineering Physics InstituteNational Nuclear Research InstituteMoscowRussia
  4. 4.Kurchatov Research InstituteMoscowRussia

Personalised recommendations