Advertisement

Astronomy Reports

, Volume 63, Issue 1, pp 1–14 | Cite as

Possible Electromagnetic Manifestations of Merging Black Holes

  • D. V. BisikaloEmail author
  • A. G. ZhilkinEmail author
  • E. P. KurbatovEmail author
Article

Abstract

The scenario of a merger of two black holes surrounded by an accretion disk is considered. As a result of the emission of gravitational waves, the mass of the central object decreases, and the accretion disk is perturbed. Computational results show that the main consequence of this perturbation is the formation of a shock propagating from the center to the periphery of the disk. The light curve is calculated and the duration of the flare estimated, assuming that the flare ends when the luminosity decreases to its initial value. If themass of the merging binary is 55M (as in the case ofGW170814), the flare from the shock will lead to an increase in the disk’s bolometric luminosity by four to six orders of magnitude, up to 1045 erg/s (an absolute magnitude of −23.8m). With a source distance of 540Mpc and reasonable assumptions about the parameters of the accretion disk, the apparent brightness of the flare at the maximum of the spectral flux density should be 12.8m−14.2m, and the duration of the flare should be several minutes. The main radiation flux from the shock lies in the X-ray and gamma-ray ranges. In the spectral band of the XMM-Newton EPIC instrument or the eROSITA telescope of the Spectr-RG Observatory (0.3−10 keV), the luminosity will increase by three to four orders of magnitude (7.5m−10m), up to 1044 erg/s, corresponding to an apparent magnitude of approximately 17m. The luminosity is maximum in the observing band of the INTEGRAL IBIS instrument (20 keV−10 MeV), where it is 1044−1045 erg/s, corresponding to an apparent flux of 10−4 photons cm−2 s−1 keV−1 at 100 keV. There is almost no brightening starting from the far ultraviolet and continuing towards longer wavelengths: the lumnosity at 10 eV grows by about a factor of two, corresponding to an absolute magnitude of −6m and a visual magnitude of 32m.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Astrophys. J. Lett. 818, L22 (2016).ADSCrossRefGoogle Scholar
  2. 2.
    B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Phys. Rev. Lett. 116, 241103 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X.Adhikari,V. B. Adya, et al., Phys. Rev. Lett. 118, 221101 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al., Astrophys. J. Lett. 851, L35 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, et al., Phys. Rev. Lett. 119, 141101 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Tutukov and A. M. Cherepashchuk, Astron. Rep. 61, 833 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    P. V. Kaigorodov, D. V. Bisikalo, A. M. Fateeva, and A. Y. Sytov, Astron. Rep. 54, 1078 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    A. Y. Sytov, P. V. Kaigorodov, A. M. Fateeva, and D. V. Bisikalo, Astron. Rep. 55, 793 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).ADSGoogle Scholar
  10. 10.
    N. Bode and S. Phinney, in Abstracts of APS AprilMeeting, Jacksonville, FL, Apr. 14–17, 2007, S1.010.Google Scholar
  11. 11.
    J. D. Bekenstein, Astrophys. J. 183, 657 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    B. Kocsis and A. Loeb, Phys. Rev. Lett. 101, 041101 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    M. Megevand, M. Anderson, J. Frank, E. W. Hirschmann, L. Lehner, S. L. Liebling, P. M. Motl, and D. Neilsen, Phys. Rev. D 80, 024012 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    S. M. O’Neill, M. C. Miller, T. Bogdanović, C. S. Reynolds, and J. D. Schnittman, Astrophys. J. 700, 859 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    L. R. Corrales, Z. Haiman, and A. MacFadyen, Mon. Not. R. Astron. Soc. 404, 947 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    G. P. Rosotti, G. Lodato, and D. J. Price, Mon. Not. R. Astron. Soc. 425, 1958 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    M. J. Fitchett, Mon. Not. R. Astron. Soc. 203, 1049 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    H. Pietilä, P. Heinämäki, S. Mikkola, and M. J. Valtonen, Celest.Mech. Dyn. Astron. 62, 377 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    S. E. de Mink and A. King, Astrophys. J. 839, 7 (2017).ADSCrossRefGoogle Scholar
  20. 20.
    V. M. Lipunov, G. Börner, and R. S.Wadhwa, Astrophysics of Neutron Stars (Springer, Berlin, Heidelberg, 1992).CrossRefGoogle Scholar
  21. 21.
    J. M. Bardeen,Nature (London,U.K.) 226, 64 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    K. S. Thorne, Astrophys. J. 191, 507 (1974).ADSCrossRefGoogle Scholar
  23. 23.
    L.-X. Li and B. Paczyński, Astrophys. J. Lett. 534, L197 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    D. B. Bowen, V. Mewes, M. Campanelli, S. C. Noble, J. H. Krolik, and M. ZilhΓo, Astrophys. J. Lett. 853, L17 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    P. Artymowicz and S. H. Lubow, Astrophys. J. 421, 651 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    R. Dong, E. Vorobyov, Y. Pavlyuchenkov, E. Chiang, and H. B. Liu, Astrophys. J. 823, 141 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    P. J. Armitage, arXiv:astro-ph/0701485 (2007).Google Scholar
  28. 28.
    E. P. Kurbatov and D. V. Bisikalo, Astron. Rep. 61, 475 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    A. A. Samarskii and I. P. Popov, Difference Methods for Solving Problems in Gas Dynamics, 2nd ed. (Nauka, Moscow, 1980) [in Russian].Google Scholar
  30. 30.
    V. L. Ginzburg, Theoretical Physics and Astrophysics (Pergamon, Oxford, 1979).Google Scholar
  31. 31.
    A. F. Illarionov and R. A. Syunyaev, Sov. Astron. 16, 45 (1972).ADSGoogle Scholar
  32. 32.
    G. G. Pavlov, Y. A. Shibanov, and P. Mészáros, Phys. Rep. 182, 187 (1989).ADSCrossRefGoogle Scholar
  33. 33.
    H. Feng and P. Kaaret, Astrophys. J. Lett. 650, L75 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    S. Fabrika, ASP Conf. Ser. 510, 395 (2017).ADSGoogle Scholar
  35. 35.
    XMM-Newton Community Support Team, XMM-Newton Users Handbook, Issue 2.16. https://xmm-tools.cosmos.esa.int/external/ xmm_user_support/documentation/uhb/XMM_ UHB.html.Google Scholar
  36. 36.
    L. Maraschi and S. Molendi, Astrophys. J. 353, 452 (1990).ADSCrossRefGoogle Scholar
  37. 37.
    R. L. C. Starling, K. Wiersema, A. J. Levan, T. Sakamoto, et al., Mon. Not. R. Astron. Soc. 411, 2792 (2011).ADSCrossRefGoogle Scholar
  38. 38.
    P. Ubertini, IBIS: Imager on Board the INTEGRAL Satellite. https://www.cosmos.esa.int/ web/integral/instruments-ibis.Google Scholar
  39. 39.
    P. Ubertini, F. Lebrun, G. di Cocco, A. Bazzano, et al., Astron. Astrophys. 411, L131 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations