Advertisement

Astronomy Reports

, Volume 62, Issue 12, pp 898–904 | Cite as

Galactic Constraints on Fermionic Dark Matter

  • A. KrutEmail author
  • C. R. Arguëlles
  • J. Rueda
  • R. Ruffini
Article
  • 11 Downloads

Abstract

In order to explain Galactic structures, a self-gravitating system composed of massive fermions in spherical symmetry is considered. The finite mass distribution of such a component is obtained after solving the Einstein equation for a thermal and semi-degenerate fermionic gas, described by a perfect fluid in hydrostatic equilibrium and exposed to cutoff effects (e.g. evaporation). Within this more general approach a family of density profiles arises, which explains dark matter halo constraints of the Galaxy and provides at the same time an alternative to the central black hole scenario in Sgr A*. This analysis narrows the allowed particle mass to mc2 = 48−345 keV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bertone and D. Hooper, arXiv: 1605.04909 (2016).Google Scholar
  2. 2.
    S. Tremaine and J. E. Gunn, Phys. Rev. Lett. 42, 407 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Univ. of Chicago, Chicago, 1939).zbMATHGoogle Scholar
  4. 4.
    S. Chandrasekhar, Principles of Stellar Dynamics (Univ. Chicago Press, Chicago, 1942).zbMATHGoogle Scholar
  5. 5.
    R. W. Michie, Mon. Not. R. Astron. Soc. 125, 127 (1963).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    I. R. King, Astron. J. 71, 64 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    R. Ruffini and L. Stella, Astron. Astrophys. 119, 35 (1983).ADSGoogle Scholar
  9. 9.
    M. Merafina and R. Ruffini, Astron. Astrophys. 221, 4 (1989).ADSGoogle Scholar
  10. 10.
    J. G. Gao, M. Merafina, and R. Ruffini, Astron. Astrophys. 235, 1 (1990).ADSGoogle Scholar
  11. 11.
    G. Ingrosso, M. Merafina, R. Ruffini, and F. Strafella, Astron. Astrophys. 258, 223 (1992).ADSGoogle Scholar
  12. 12.
    P.-H. Chavanis, Phys. A (Amsterdam,Neth.) 332, 89 (2004); arXiv: cond-mat/0304073.ADSCrossRefGoogle Scholar
  13. 13.
    N. Bilic, F. Munyaneza, G. B. Tupper, and R. D. Viollier, Prog. Part. Nucl. Phys. 48, 291 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075 (2009); arXiv: 0810.4674.ADSCrossRefGoogle Scholar
  15. 15.
    S. Gillessen, F. Eisenhauer, T. K. Fritz, H. Bartko, K. Dodds-Eden, O. Pfuhl, T. Ott, and R. Genzel, Astrophys. J. Lett. 707, L114 (2009); arXiv: 0910.3069.Google Scholar
  16. 16.
    R. Ruffini, C. R. Argüelles, and J. A. Rueda, Mon. Not. R. Astron. Soc. 451, 622 (2015); arXiv: 1409.7365.ADSCrossRefGoogle Scholar
  17. 17.
    I. Siutsou, C. R. Argüelles, and R. Ruffini, Astron. Rep. 59, 656 (2015); arXiv: 1402.0695.ADSCrossRefGoogle Scholar
  18. 18.
    C. R. Argüelles and R. Ruffini, Int. J. Mod. Phys. D 23, 1442020 (2014); arXiv: 1405.7505.ADSCrossRefGoogle Scholar
  19. 19.
    C. R. Argüelles, R. Ruffini, I. Siutsou, and B. Fraga, J. Korean Phys. Soc. 65, 801 (2014); arXiv: 1402.0700.ADSCrossRefGoogle Scholar
  20. 20.
    C. R. Argüelles, N. E. Mavromatos, J. A. Rueda, and R. Ruffini, J. Cosm. Astropart. Phys. 4, 038 (2016); arXiv: 1502.00136.ADSCrossRefGoogle Scholar
  21. 21.
    P.-H. Chavanis, M. Lemou, and F. Mêhats, Phys.Rev. D 92, 123527 (2015); arXiv: 1409.7840.ADSCrossRefGoogle Scholar
  22. 22.
    P.-H. Chavanis, Phys. Rev. E 65, 056123 (2002); cond-mat/0109294.ADSCrossRefGoogle Scholar
  23. 23.
    P.-H. Chavanis, Phys. A (Amsterdam, Neth.) 365, 102 (2006); cond-mat/0509726.ADSCrossRefGoogle Scholar
  24. 24.
    C. R. Argüelles, A. Krut, J. A. Rueda, and R. Ruffini, Phys. Dark Universe 21, 82 (2018).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Sofue, Publ. Astron. Soc. Jpn. 65, 118 (2013); 1307.8241.ADSCrossRefGoogle Scholar
  26. 26.
    S. L. J. Gibbons, V. Belokurov, and N. W. Evans, Mon. Not. R. Astron. Soc. 445, 3788 (2014); arXiv: 1406.2243.ADSCrossRefGoogle Scholar
  27. 27.
    D. Tsiklauri and R. D. Viollier, Astrophys. J. 500, 591 (1998); astro-ph/9805273.ADSCrossRefGoogle Scholar
  28. 28.
    F. De Paolis, G. Ingrosso, A. A. Nucita, D. Orlando, S. Capozziello, and G. Iovane, Astron. Astrophys. 376, 853 (2001); astro-ph/0107497.ADSCrossRefGoogle Scholar
  29. 29.
    F. Iocco, M. Pato, and G. Bertone, Nat. Phys. 11, 245 (2015); arXiv: 1502.03821.CrossRefGoogle Scholar
  30. 30.
    V. Belokurov, S. E. Koposov, N. W. Evans, J. Pen˜ arrubia, M. J. Irwin, M. C. Smith, G. F. Lewis, M. Gieles, M. I. Wilkinson, G. Gilmore, et al., Mon. Not. R. Astron. Soc. 437, 116 (2014); arXiv: 1301.7069.ADSCrossRefGoogle Scholar
  31. 31.
    D. Lynden-Bell and R. M. Lynden-Bell, Mon. Not. R. Astron. Soc. 275, 429 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    C. R. Argüelles, R. Ruffini, and B.M.O. Fraga, J.Korean Phys. Soc. 65, 809 (2014); arXiv: 1402.1329.ADSCrossRefGoogle Scholar
  33. 33.
    M. Portail, O. Gerhard, C. Wegg, and M. Ness, Mon. Not. R. Astron. Soc. 465, 1621 (2017); arXiv: 1608.07954.ADSCrossRefGoogle Scholar
  34. 34.
    L.G. Gómez, C. R. Argüelles, V. Perlick, J. A. Rueda, and R. Ruffini, Phys. Rev.D94, 123004 (2016); arXiv: 1610.03442.Google Scholar
  35. 35.
    A. Lobanov, Nat. Astron. 1, 0069 (2017).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Krut
    • 1
    • 2
    • 3
    Email author
  • C. R. Arguëlles
    • 1
    • 4
  • J. Rueda
    • 1
    • 2
    • 5
  • R. Ruffini
    • 1
    • 2
    • 5
  1. 1.ICRANetPescaraItaly
  2. 2.ICRA and University of Rome “Sapienza,”Physics DepartmentRomeItaly
  3. 3.University of Nice-Sophia AntipolisNiceFrance
  4. 4.Instituto de Astrofisica de La Plata (CCT La Plata, CONICET, UNLP)La PlataArgentina
  5. 5.ICRANet-RioCentro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil

Personalised recommendations