Advertisement

Astronomy Reports

, Volume 62, Issue 12, pp 890–897 | Cite as

Polarization of Gravitational Waves in General Teleparallel Theories of Gravity

  • M. HohmannEmail author
Article

Abstract

We determine the possible gravitational wave polarizations in two general classes of teleparallel gravity theories, using the metric and symmetric teleparallel geometries. For this purpose we apply the Newman–Penrose formalism, and find that depending on the choice of parameters, the E(2) class of the theories is one of N2,N3, III5, II6, corresponding to two to six polarizations, where all of them include the two tensor polarizations known from general relativity. We also find classes of theories apart from general relativity which yield the same polarizations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett. 119, 141101 (2017); arXiv: 1709.09660.ADSCrossRefGoogle Scholar
  2. 2.
    E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).ADSCrossRefGoogle Scholar
  3. 3.
    D.M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner, and C. M. Will, Phys. Rev. Lett. 30, 884 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    D. M. Eardley, D. L. Lee, and A. P. Lightman, Phys. Rev. D 8, 3308 (1973).ADSCrossRefGoogle Scholar
  5. 5.
    C. Møller, K. Dan. Vidensk. Selsk. Mat. Fys. Skr. 1, 1 (1961).Google Scholar
  6. 6.
    Y.M. Cho, Phys. Rev. D 14, 2521 (1976).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    J. W. Maluf, Ann. Phys. 525, 339 (2013); arXiv: 1303.3897.MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. M. Nester and H.-J. Yo, Chin. J. Phys. 37, 113 (1999); gr-qc/9809049.Google Scholar
  9. 9.
    M. Adak, M. Kalay, and O. Sert, Int. J.Mod. Phys. D 15, 619 (2006), gr-qc/0505025.ADSCrossRefGoogle Scholar
  10. 10.
    C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, Cambridge, 1993).CrossRefzbMATHGoogle Scholar
  11. 11.
    S. Bahamonde, Ch.G. Böhmer, and M. Krššák, Phys. Lett. B 775, 37 (2017); arXiv: 1706.04920.ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Hohmann, M. Krššák, C. Pfeifer, and U. Ualikhanova(2018, in press).Google Scholar
  14. 14.
    A. Golovnev, T. Koivisto, and M. Sandstad, Class. Quantum Grav. 34, 145013 (2017); arXiv: 1701.06271.ADSCrossRefGoogle Scholar
  15. 15.
    J. Beltran Jimenez, L. Heisenberg, and T. Koivisto (2017); arXiv: 1710.03116.Google Scholar
  16. 16.
    J. Beltran Jimenez, L. Heisenberg, and T. S. Koivisto (2018); arXiv: 1803.10185.Google Scholar
  17. 17.
    M. Hohmann, C. Pfeifer, J. L. Said, and U. Ualikhanova (2018, in press).Google Scholar
  18. 18.
    M. Hohmann, L. Järv, and U. Ualikhanova, Phys. Rev. D 97, 104011 (2018); arXiv: 1801.05786.ADSCrossRefGoogle Scholar
  19. 19.
    M. Hohmann, arXiv:1801.06528 (2018).Google Scholar
  20. 20.
    M. Hohmann and C. Pfeifer (2018); arXiv:1801.06536.Google Scholar
  21. 21.
    M. Hohmann (2018); arXiv:1801.06531.Google Scholar
  22. 22.
    L. Järv, M. Rünkla, M. Saal, and O. Vilson (2018); arXiv:1802.00492.Google Scholar
  23. 23.
    M. Rünkla and O. Vilson (2018); arXiv:1805.12197.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Theoretical Physics, Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations