Advertisement

Astronomy Reports

, Volume 62, Issue 12, pp 874–881 | Cite as

Localized Objects Formed by Self-Trapped Gravitational Waves

  • G. FodorEmail author
Article
  • 10 Downloads

Abstract

Geons are localized horizonless objects formed by gravitational waves, held together by the gravitational attraction of their own field energy. In many respects they are similar to scalar field pulson/oscillon configurations, which were found numerically in 1976 by Kudryavtsev, Bogolyubskii, and Makhankov. If there is a negative cosmological constant, the spacetime of geons asymptotically approaches the anti-de Sitter (AdS) metric. AdS geons are time-periodic regular localized vacuum solutions without any radiation loss at infinity. A higher order perturbative construction in terms of an amplitude parameter shows that there are one-parameter families of AdS geon solutions emerging from combinations of identical-frequency linear modes of the system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Kosevich and A. S. Kovalev, Sov. Phys. JETP 40, 1973 (1975).Google Scholar
  2. 2.
    R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 11, 3424 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    A. E. Kudryavtsev, JETP Lett. 22, 82 (1975).ADSGoogle Scholar
  4. 4.
    I. L. Bogolubsky, Phys. Lett. A 61, 205 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    I. L. Bogolyubskii and V. G. Makhan’kov, JETP Lett. 25, 107 (1977).ADSGoogle Scholar
  6. 6.
    M. Gleiser, Phys. Rev. D 49, 2978 (1994); hepph/9308279.ADSCrossRefGoogle Scholar
  7. 7.
    E. J. Copeland, M. Gleiser, and H.-R. Müller, Phys. Rev. D 52, 1920 (1995); hep-ph/9503217.ADSCrossRefGoogle Scholar
  8. 8.
    E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    E. Seidel and W. M. Suen, Phys. Rev. Lett. 72, 2516 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    H. Segur and M. D. Kruskal, Phys. Rev. Lett. 58, 747 (1987).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G. Fodor, P. Forgács, Z. Horváth, and M. Mezei, Phys. Rev. D 79, 065002 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    G. Fodor, P. Forgács, Z. Horváth, and M. Mezei, Phys. Lett. B 674, 319 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    D. N. Page, Phys. Rev. D 70, 023002 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    G. Fodor, P. Forgács, and M. Mezei, Phys. Rev. D 81, 064029 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    P. Grandclément, G. Fodor, and P. Forgács, Phys. Rev. D 84, 065037 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. Wheeler, Phys. Rev. 97, 511 (1955).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D. R. Brill and J. B. Hartle, Phys. Rev. 135, B271 (1964).Google Scholar
  18. 18.
    P. R. Anderson and D. R. Brill, Phys. Rev. D 56, 4824 (1997).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. Maliborski and A. Rostworowski, Phys. Rev. Lett. 111, 051102 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    G. Fodor, P. Forgács, and P. Grandclément, Phys. Rev. D 89, 065027 (2014).ADSCrossRefGoogle Scholar
  21. 21.
    G. Fodor, P. Forgács, and P. Grandclément, Phys. Rev. D 92, 025036 (2015).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    O. J. C. Dias, G. T. Horowitz, and J. E. Santos, Class. Quantum Grav. 29, 194002 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    O. J. C. Dias and J. E. Santos, Class. Quantum Grav. 33, 23LT01 (2016).Google Scholar
  24. 24.
    A. Rostworowski, Class. Quantum Grav. 34, 128001 (2017).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    G. T. Horowitz and J. E. Santos, in Surveys in Differential Geometry, Vol. 20: One Hundred Years of General Relativity (Int. Press of Boston, Boston, 2015), p. 321.Google Scholar
  26. 26.
    G. Martinon, G. Fodor, P. Grandclément, and P. Forgács, Class.Quantum Grav. 34, 125012 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    A. Rostworowski, Phys. Rev. D 95, 124043 (2017).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    O. J. C. Dias and J. E. Santos (2017); arXiv: 1705.03065.Google Scholar
  29. 29.
    J. B. Griffiths and J. Podolsky, Exact Space–Times in Einstein’s General Relativity, CambridgeMonographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, 2009).CrossRefzbMATHGoogle Scholar
  30. 30.
    P. Bizonánd A. Rostworowski, Phys. Rev. Lett. 107, 031102 (2011).ADSCrossRefGoogle Scholar
  31. 31.
    S.W. Hawking, Phys. Lett. B 126, 175 (1983).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. Ashtekar and S. Das, Class. Quantum Grav. 17, L17 (2000).Google Scholar
  33. 33.
    A. Ashtekar and A. Magnon, Class. Quantum Grav. 1, L39 (1984).Google Scholar
  34. 34.
    S. Hollands, A. Ishibashi, and D. Marolf, Class. Quantum Grav. 22, 2881 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    G. Fodor and P. Forgács, Phys. Rev. D 96, 084027 (2017).ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957).ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970).ADSCrossRefGoogle Scholar
  38. 38.
    F. J. Zerilli, Phys. Rev. D 2, 2141 (1970).ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    S. Mukohyama, Phys. Rev. D 62, 084015 (2000).ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    H. Kodama, A. Ishibashi, and O. Seto, Phys. Rev. D 62, 064022 (2000).ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    H. Kodama and A. Ishibashi, Prog. Theor. Phys. 110, 701 (2003).ADSCrossRefGoogle Scholar
  42. 42.
    A. Ishibashi and R. M. Wald, Class. Quantum Grav. 21, 2981 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Wigner Research Centre for PhysicsRMKI, BudapestHungary

Personalised recommendations